Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum plasmonics

Abstract

Quantum plasmonics is a rapidly growing field of research that involves the study of the quantum properties of light and its interaction with matter at the nanoscale. Here, surface plasmons—electromagnetic excitations coupled to electron charge density waves on metal–dielectric interfaces or localized on metallic nanostructures—enable the confinement of light to scales far below that of conventional optics. We review recent progress in the experimental and theoretical investigation of the quantum properties of surface plasmons, their role in controlling light–matter interactions at the quantum level and potential applications. Quantum plasmonics opens up a new frontier in the study of the fundamental physics of surface plasmons and the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SPP.
Figure 2: Probing fundamental quantum properties of SPPs.
Figure 3: Coupling of single emitters to SPPs.
Figure 4: Quantum plasmonic circuitry.
Figure 5: Quantum plasmonics roadmap.

Similar content being viewed by others

References

  1. Takahara, J., Yamagisha, S., Taki, H., Morimoto, A. & Kobayashi, T. Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997).

    Article  ADS  Google Scholar 

  2. Gramotnev, D. K. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    Article  ADS  Google Scholar 

  3. Schuller, J. A. et al. Plasmonics for extreme light concentration. Nature Mater. 9, 193–204 (2010).

    Article  ADS  Google Scholar 

  4. Berini, I. & De Leon, Surface plasmon-polariton amplifiers and lasers. Nature Photon. 6, 16–24 (2011).

    Article  ADS  Google Scholar 

  5. Ma, R-M., Oulton, R. F., Sorger, V. J. & Zhang, X. Plasmon lasers: Coherent light source at molecular scales. Laser Photon. Rev. 7, 1–21 (2012).

    Article  ADS  Google Scholar 

  6. Hess, O. et al. Active nanoplasmonic metamaterials. Nature Mater. 11, 573–584 (2012).

    Article  ADS  Google Scholar 

  7. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    Article  ADS  Google Scholar 

  8. Giannini, V., Fernández-Dominguez, A. I., Heck, S. C. & Maier, S. A. Plasmonic nanoantenas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888–3912 (2011).

    Article  Google Scholar 

  9. Jacob, Z. & Shalaev, V. M. Plasmonics goes quantum. Science 334, 463–464 (2011).

    Article  ADS  Google Scholar 

  10. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    Article  ADS  Google Scholar 

  11. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    Article  ADS  Google Scholar 

  12. Kolesov, R. et al. Wave-particle duality of single surface plasmon polaritons. Nature Phys. 5, 470–474 (2009).

    Article  ADS  Google Scholar 

  13. Koenderink, A. F. Plasmon nanoparticle array waveguides for single photon and single plasmon sources. Nano Lett. 9, 4228–4233 (2009).

    Article  ADS  Google Scholar 

  14. Chen, Y., Lodahl, P. & Koenderink, A. F. Dynamically reconfigurable directionality of plasmon-based single photon sources. Phys. Rev. B 82, 081402 (2010).

    Article  ADS  Google Scholar 

  15. Gan, C. H., Hugonin, J. P. & Lalanne, P. Proposal for compact solid-state III–V single-plasmon sources. Phys. Rev. X 2, 021008 (2012).

    Google Scholar 

  16. de Leon, N. P. et al. Tailoring light–matter interaction with a nanoscale plasmon resonator. Phys. Rev. Lett. 108, 226803 (2012).

    Article  ADS  Google Scholar 

  17. Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    Article  ADS  Google Scholar 

  18. Kolchin, P., Oulton, R. F. & Zhang, X. Nonlinear quantum optics in a waveguide: Distinct single photons strongly interacting at the single atom level. Phys. Rev. Lett. 106, 113601 (2011).

    Article  ADS  Google Scholar 

  19. Frank, R. Coherent control of Floquet-mode dressed plasmon polaritons. Phys. Rev. B 85, 195463 (2012).

    Article  ADS  Google Scholar 

  20. Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation and quantum-state engineering driven by dissipation. Nature Phys. 5, 633–636 (2009).

    Article  ADS  Google Scholar 

  21. Pines, D. A collective description of electron interactions: IV. Electron interaction in metals. Phys. Rev. 92, 626–636 (1953).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hopfield, J. J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112, 1555–1567 (1958).

    Article  ADS  MATH  Google Scholar 

  23. Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  24. Elson, J. M. & Ritchie, R. H. Photon interactions at a rough metal surface. Phys. Rev. B 4, 4129–4138 (1971).

    Article  ADS  Google Scholar 

  25. Nakamura, Y. O. Quantization of non-radiative surface plasma oscillations. Prog. Theor. Phys. 70, 908–919 (1983).

    Article  ADS  Google Scholar 

  26. Tassin, P., Koschny, T., Kafesaki, M. & Soukoulis, C. M. A Comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nature Photon. 6, 259–264 (2012).

    Article  ADS  Google Scholar 

  27. Huttner, B. & Barnett, S. M. Quantization of the electromagnetic field in dielectrics. Phys. Rev. A 46, 4306–4322 (1992).

    Article  ADS  Google Scholar 

  28. Philbin, T. G. Canonical quantization of macroscopic electromagnetism. New. J. Phys. 12, 123008 (2010).

    Article  ADS  Google Scholar 

  29. Crowell, J. & Ritchie, R. H. Radiative decay of Coulomb-stimulated plasmons in spheres. Phys. Rev. 172, 436–440 (1968).

    Article  ADS  Google Scholar 

  30. Trügler, A. & Hohenester, U. Strong coupling between a metallic nanoparticle and a single molecule. Phys. Rev. B 77, 115403 (2008).

    Article  ADS  Google Scholar 

  31. Waks, E. & Sridharan, D. Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter. Phys. Rev. A 82, 043845 (2010).

    Article  ADS  Google Scholar 

  32. Archambault, A., Marquier, F., Greffet, J-J. & Arnold, C. Quantum theory of spontaneous and stimulated emission of surface plasmons. Phys. Rev. B 82, 035411 (2010).

    Article  ADS  Google Scholar 

  33. Tame, M. S. et al. Single-photon excitation of surface plasmon polaritons. Phys. Rev. Lett. 101, 190504 (2008).

    Article  ADS  Google Scholar 

  34. Takahara, J., Kusunoki, F. & Kobayashi, T. Guiding of two-dimensional optical waves in a negative dielectric gap having a dielectric core. Proc. SPIE 5928, 1–10 (2005).

    Google Scholar 

  35. Takahara, J. in Plasmonic Nanoguides and Circuits (ed. Bozhevolnyi, S. I.) Ch. 2 (Pan Stanford Publishing, 2009).

    Google Scholar 

  36. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    Article  ADS  Google Scholar 

  37. Barnes, W. L. Fluorescence near interfaces: The role of photonic mode density. J. Mod. Opt. 45, 661–699 (1998).

    Article  ADS  Google Scholar 

  38. Hecker, N. E., Höpfel, R. A., Sawaki, N., Maier, T. & Strasser, G. Surface plasmon-enhanced photoluminescene from a single quantum well. Appl. Phys. Lett. 75, 1577–1579 (1999).

    Article  ADS  Google Scholar 

  39. Neogi, A. et al. Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys. Rev. B 66, 153305 (2002).

    Article  ADS  Google Scholar 

  40. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 674 (1946).

    Article  Google Scholar 

  41. Yeung, M. S. & Gustafson, T. K. Spontaneous emission near an absorbing dielectric surface. Phys. Rev. A 54, 5227–5242 (1996).

    Article  ADS  Google Scholar 

  42. Altewischer, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).

    Article  ADS  Google Scholar 

  43. Moreno, E., García, F. J., Erni, D., Ignacio Cirac, J. & Martín-Moreno, L. Theory of plasmon-assisted transmission of entangled photons. Phys. Rev. Lett. 92, 236801 (2004).

    Article  ADS  Google Scholar 

  44. Fasel, S. et al. Energy-time entanglement preservation in plasmon-assisted light transmission. Phys. Rev. Lett. 94, 110501 (2005).

    Article  ADS  Google Scholar 

  45. Fasel, S., Halder, M., Gisin, N. & Zbinden, H. Quantum superposition and entanglement of mesoscopic plasmons. New J. Phys. 8, 13–20 (2006).

    Article  ADS  Google Scholar 

  46. Ren, X. F., Guo, G. P., Huang, Y. F., Li, C. F. & Guo, G. C. Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state. Europhys. Lett. 76, 753–759 (2006).

    Article  ADS  Google Scholar 

  47. Guo, G. P. et al. Observation of two-photon coherence in plasmon-assisted transmission. Phys. Lett. A 361, 218–222 (2007).

    Article  ADS  Google Scholar 

  48. Huck, A. et al. Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. Phys. Rev. Lett. 102, 246802 (2009).

    Article  ADS  Google Scholar 

  49. Di Martino, G. et al. Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. Nano Lett. 12, 2504–2508 (2012).

    Article  ADS  Google Scholar 

  50. Fujii, G. et al. Preservation of photon indistinguishability after transmission through surface-plasmon-polariton waveguide. Opt. Lett. 37, 1535–1537 (2012).

    Article  ADS  Google Scholar 

  51. Halperin, W. P. Quantum size effects in metal particles. Rev. Mod. Phys. 58, 533–606 (1986).

    Article  ADS  Google Scholar 

  52. Genzel, L., Martin, T. P. & Kreibig, U. Dielectric function and plasma resonances of small metal particles. Z. Physik B 21, 339–346 (1975).

    Article  ADS  Google Scholar 

  53. Keller, O., Xiao, M. & Bozhevolnyi, S. Optical diamagnetic polarizability of a mesoscopic metallic sphere: Transverse self-field approach. Opt. Commun. 102, 238–244 (1993).

    Article  ADS  Google Scholar 

  54. Halas, N. J., Lal, S., Chang, W-S., Link, S. & Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011).

    Article  Google Scholar 

  55. Kreibig, U. & Genzel, L. Optical absorption of small metallic particles. Surf. Sci. 156, 678–700 (1985).

    Article  ADS  Google Scholar 

  56. Scholl, J. A., Koh, A. L. & Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–427 (2012).

    Article  ADS  Google Scholar 

  57. Haberland, H. Looking from both sides. Nature 494, E1 (2013).

    Article  ADS  Google Scholar 

  58. Ouyang, F., Batson, P. E. & Isaacson, M. Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Phys. Rev. B 46, 15421–15425 (1992).

    Article  ADS  Google Scholar 

  59. Prodan, E. & Nordlander, P. Structural tunability of the plasmon resonances in metallic nanoshells. Nano Lett. 3, 543–547 (2003).

    Article  ADS  Google Scholar 

  60. Prodan, E., Nordlander, P. & Halas, N. J. Electronic structure and optical properties of gold nanoshells. Nano Lett. 3, 1411–1415 (2003).

    Article  ADS  Google Scholar 

  61. Zuloaga, J., Prodan, E. & Nordlander, P. Quantum plasmonics: Optical properties and tenability of metallic nanorods. ACS Nano 4, 5269–5276 (2010).

    Article  Google Scholar 

  62. Zuloaga, J., Prodan, E. & Nordlander, P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9, 887–891 (2009).

    Article  ADS  Google Scholar 

  63. Townsend, E. & Bryant, G. W. Plasmonic properties of metallic nanoparticles: The effects of size quantization. Nano Lett. 12, 429–434 (2012).

    Article  ADS  Google Scholar 

  64. Yuan, Z. & Gao, S. Linear-response study of plasmon excitation in metallic thin films: Layer-dependent hybridization and dispersion. Phys. Rev. B 73, 155411 (2006).

    Article  ADS  Google Scholar 

  65. Jaklevic, R. C., Lambe, J., Mikkor, M. & Vassell, W. C. Observation of electron standing waves in a crystalline box. Phys. Rev. Lett. 26, 88–92 (1971).

    Article  ADS  Google Scholar 

  66. Thongrattanasiri, S., Manjavacas, A. & Garcia de Abajo, F. J. Quantum finite-size effects in graphene plasmons. ACS Nano 6, 1766–1775 (2012).

    Article  Google Scholar 

  67. Mao, L., Li, Z., Wu, B. & Xu, H. Effects of quantum tunneling in metal nanogap on surface-enhanced Raman scattering. Appl. Phys. Lett. 94, 243102 (2009).

    Article  ADS  Google Scholar 

  68. Savage, K. J. et al. Revealing the quantum regime in tunelling plasmonics. Nature 491, 574–577 (2012).

    Article  ADS  Google Scholar 

  69. Esteban, R., Borisov, A. G., Nordlander, P. & Aizpurua, J. Bridging quantum and classical plasmonics. Nature Commun. 3, 825 (2012).

    Article  ADS  Google Scholar 

  70. Scholl, J. A., Garcia-Etxarri, A., Koh, A. L. & Dionne, J. A. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 13, 564–569 (2013).

    Article  ADS  Google Scholar 

  71. Marinica, D. C., Kazansky, A. K., Nordlander, P., Aizpurua, J. & Borisov, A. G. Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 12, 1333–1339 (2012).

    Article  ADS  Google Scholar 

  72. Wu, L. et al. Fowler–Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles. ACS Nano 7, 707–716 (2013).

    Article  Google Scholar 

  73. Monroe, C. Quantum information processing with atoms and photons. Nature 416, 238–246 (2002).

    Article  ADS  Google Scholar 

  74. Drexhage, K. H., Kuhn, H. & Schäfer, F. P. Variation of the fluorescence decay time of a molecule in front of a mirror. Ber. Bunsenges. Phys. Chem. 72, 329 (1968).

    Google Scholar 

  75. Chance, R. R., Prock, A. & Silbey, R. Lifetime of an emitting molecule near a partially reflecting surface. J. Chem. Phys. 60, 2744–2748 (1974).

    Article  ADS  Google Scholar 

  76. Gersten, J. & Nitzan, A. Spectroscopic properties of molecules interacting with small dielectric particles. J. Chem. Phys. 75, 1139–1152 (1981).

    Article  ADS  Google Scholar 

  77. Barnes, W. L. Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices. J. Lightw. Technol. 17, 2170–2182 (1999).

    Article  ADS  Google Scholar 

  78. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    Article  ADS  Google Scholar 

  79. Yannopapas, V., Paspalakis, E. & Vitanov, N. V. Plasmon-induced enhancement of quantum interference near metallic nanostructures. Phys. Rev. Lett. 103, 063602 (2009).

    Article  ADS  Google Scholar 

  80. Hatef, A. & Singh, M. R. Plasmonic effect on quantum coherence and interference in metallic photonic crystals doped with quantum dots. Phys. Rev. A 81, 063816 (2010).

    Article  ADS  Google Scholar 

  81. Huck, A., Kumar, S., Shakoor, A. & Andersen, U. L. Controlled coupling of single nitrogen-vacancy center to a silver nanowire. Phys. Rev. Lett. 106, 096801 (2011).

    Article  ADS  Google Scholar 

  82. Fedutik, Y., Temnov, V. V., Schöps, O., Woggon, U. & Artemyev, M. V. Exciton-plasmon-photon conversion in plasmonic nanostructures. Phys. Rev. Lett. 99, 136802 (2007).

    Article  ADS  Google Scholar 

  83. Falk, A. L. et al. Near-field electrical detection of optical plasmons and single-plasmon sources. Nature Phys. 5, 475–479 (2009).

    Article  ADS  Google Scholar 

  84. Ropp, A. et al. Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot. Nature Commun. 4, 1447 (2013).

    Article  ADS  Google Scholar 

  85. Pfaff, W., Vos, A. & Hanson, R. Top-down fabrication of plasmonic nanostructures for deterministic coupling to single quantum emitters. J. Appl. Phys. 113, 024310 (2013).

    Article  ADS  Google Scholar 

  86. Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    Article  ADS  Google Scholar 

  87. Sorger, V. J. et al. Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap. Nano Lett. 11, 4907–4911 (2011).

    Article  ADS  Google Scholar 

  88. Jun, Y. C., Kekatpure, R. D., White, J. S. & Brongersma, M. L. Nonresonant enhancement of spontaneous emission in metal–dielectric–metal plasmon waveguide structures. Phys. Rev. B 78, 153111 (2008).

    Article  ADS  Google Scholar 

  89. Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–911 (2010).

    Article  ADS  Google Scholar 

  90. Farahani, J. N., Pohl, D. W., Eisler, H-J. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: A tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005).

    Article  ADS  Google Scholar 

  91. Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon. 3, 654–657 (2012).

    Article  ADS  Google Scholar 

  92. Koenderink, A. F. On the use of Purcell factors for plasmon antennas. Opt. Lett. 35, 4208–4210 (2010).

    Article  ADS  Google Scholar 

  93. Chen, Y., Wubs, M., Mørk, J. & Koenderink, A. F. Coherent single-photon absorption by single emitters coupled to one-dimensional nanophotonic waveguides. New J. Phys. 13, 103010 (2011).

    Article  ADS  Google Scholar 

  94. Rice, P. R. & Brecha, R. J. Cavity induced transparency. Opt. Commun. 126, 230–235 (1995).

    Article  ADS  Google Scholar 

  95. Ridolfo, A., Di Stefano, O., Fina, N., Saija, R. & Savasta, S. Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the Fano effect on photon statistics. Phys. Rev. Lett. 105, 263601 (2010).

    Article  ADS  Google Scholar 

  96. Zhang, W., Govorov, A. O. & Bryant, G. W. Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect. Phys. Rev. Lett. 97, 146804 (2006).

    Article  ADS  Google Scholar 

  97. Dintinger, J., Klein, S., Bustos, F., Barnes, W. L. & Ebbesen, T. W. Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B 71, 035424 (2005).

    Article  ADS  Google Scholar 

  98. Fofang, N. T. et al. Plexitonic nanoparticles: Plasmon-exciton coupling in nanoshell-J aggregate complexes. Nano Lett. 8, 3481–3487 (2008).

    Article  ADS  Google Scholar 

  99. Passmore, B. S. et al. Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots. Nano Lett. 11, 338–342 (2011).

    Article  ADS  Google Scholar 

  100. Vasa, P. et al. Real time observations of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nature Photon. 7, 128–132 (2013).

    Article  ADS  Google Scholar 

  101. Savasta, S. et al. Interaction nanopolaritons: Vacuum Rabi splitting with a single quantum dot in the center of a dimer. ACS Nano 4, 6369–6376 (2010).

    Article  Google Scholar 

  102. Van Vlack, C., Kristensen, P. T. & Hughes, S. Spontaneous emission spectra and quantum light–matter interactions from a strongly coupled quantum dot metal nanoparticle system. Phys. Rev. B 85, 075303 (2012).

    Article  ADS  Google Scholar 

  103. Gonzalez-Tudela, A., Rodríguez, F. J., Quiroga, L. & Tejedor, C. Dissipative dynamics of a solid-state qubit coupled to surface plasmons: From Markov to non-Markov regimes. Phys. Rev. B 82, 115334 (2010).

    Article  ADS  Google Scholar 

  104. Dung, H., Knöll, L. & Welsch, D. Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics. Phys. Rev. A 57, 3931–3942 (1998).

    Article  ADS  Google Scholar 

  105. Koppens, F. H. L., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: A platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    Article  ADS  Google Scholar 

  106. Gong, Y. & Vučković, J. Design of plasmon cavities for solid-state cavity quantum electrodynamics applications. Appl. Phys. Lett. 90, 033133 (2007).

    Article  ADS  Google Scholar 

  107. Min, B. et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 457, 455–458 (2009).

    Article  ADS  Google Scholar 

  108. Xiao, Y. et al. Strongly enhanced light matter interaction in a hybrid photonic-plasmonic resonator. Phys. Rev. A 85, 031805 (2009).

    Article  ADS  Google Scholar 

  109. Choy, J. T. et al. Enhanced single-photon emission from a diamond–silver aperture. Nature Photon. 5, 738–743 (2011).

    Article  ADS  Google Scholar 

  110. Russell, K. J., Liu, T., Cui, S. & Hu, E. L. Large spontaneous emission enhancement in plasmonic nanocavities. Nature Photon. 6, 459–462 (2012).

    Article  ADS  Google Scholar 

  111. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    Article  ADS  Google Scholar 

  112. Manjavacas, A., Nordlander, P. & García de Abajo, F. J. Plasmon blockade in nanostructured graphene. ACS Nano 6, 1724–1731 (2012).

    Article  Google Scholar 

  113. Hutchison, J. A., Schwartz, T., Genet, C., Devaux, E. & Ebbesen, T. W. Modifying chemical landscapes by coupling to vacuum fields. Angew. Chem. Int. Ed. 51, 1592–1596 (2012).

    Article  Google Scholar 

  114. Dzsotjan, D., Kaestel, J. & Fleischhauer, M. Dipole–dipole shift of quantum emitters coupled to surface plasmons of a nanowire. Phys. Rev. B 84, 075419 (2011).

    Article  ADS  Google Scholar 

  115. Pustovit, V. N. & Shahnazyan, T. V. Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: The plasmonic Dicke effect. Phys. Rev. Lett. 102, 077401 (2009).

    Article  ADS  Google Scholar 

  116. Martín-Cano, D. et al. Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides. Phys. Rev. B 84, 235306 (2011).

    Article  ADS  Google Scholar 

  117. Lin, Z-R. et al. Quantum bus of metal nanoring with surface plasmon polaritons. Phys. Rev. B 82, 241401 (2010).

    Article  ADS  Google Scholar 

  118. Chen, G-Y., Lambert, N., Chou, C-H., Chen, Y-N. & Nori, F. Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement. Phys. Rev. B 84, 045310 (2011).

    Article  ADS  Google Scholar 

  119. Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    Article  ADS  Google Scholar 

  120. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    Article  ADS  Google Scholar 

  121. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  ADS  Google Scholar 

  122. Ma, R., Oulton, R. F., Sorger, V., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Mater. 10, 110–113 (2011).

    Article  ADS  Google Scholar 

  123. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    Article  ADS  Google Scholar 

  124. Moiseev, S. A., Kamli, A. & Sanders, B. C. Low-loss nonlinear polaritonics. Phys. Rev. A. 81, 033839 (2010).

    Article  ADS  Google Scholar 

  125. Siomau, M., Kamli, A. A., Moiseev, A. A. & Sanders, B. C. Entanglement creation with negative index metamaterials. Phys. Rev. A 85, 050303 (2012).

    Article  ADS  Google Scholar 

  126. Wang, S. M. et al. Hong–Ou–Mandel interference mediated by the magnetic plasmon waves in a three-dimensional optical metamaterial. Opt. Lett. 20, 5213–5218 (2012).

    Google Scholar 

  127. Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).

    Article  ADS  Google Scholar 

  128. Chang, D. E. et al. Trapping and manipulation of isolated atoms using nanoscale plasmonic structures. Phys. Rev. Lett. 103, 123004 (2009).

    Article  ADS  Google Scholar 

  129. Stehle, C. et al. Plasmonically tailored micropotenials for ultracold atoms. Nature Photon. 5, 494–498 (2011).

    Article  ADS  Google Scholar 

  130. Gullans, M. et al. Nanoplasmonic Lattices for Ultracold atoms. Phys. Rev. Lett. 109, 235309 (2012).

    Article  ADS  Google Scholar 

  131. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    Article  ADS  Google Scholar 

  132. De Leon, N. P., Lukin, M. D. & Park, H. Quantum plasmonic circuits. IEEE Sel. Top. Quant. Elec. 18, 1781–1791 (2012).

    Article  Google Scholar 

  133. Celebrano, M. et al. Efficient coupling of single photons to single plasmons. Opt. Exp. 18, 13829–13835 (2010).

    Article  ADS  Google Scholar 

  134. Heeres, R. W. et al. On-chip single plasmon detection. Nano Lett. 10, 661–664 (2010).

    Article  ADS  Google Scholar 

  135. Cuche, A., Mollet, O., Drezet, A. & Huant, S. Deterministic quantum plasmonics. Nano Lett. 10, 4566–4570 (2011).

    Article  ADS  Google Scholar 

  136. Koller, D. M. et al. Surface plasmon coupled electroluminescent emission. Appl. Phys. Lett. 92, 103304 (2008).

    Article  ADS  Google Scholar 

  137. Quinten, M., Leitner, A., Krenn, J. R. & Aussenegg, F. R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331–1333 (1998).

    Article  ADS  Google Scholar 

  138. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    Article  ADS  Google Scholar 

  139. Yurke, B. & Kuang, W. Passive linear nanoscale optical and molecular electronics device synthesis from nanoparticles. Phys. Rev. A 81, 033814 (2010).

    Article  ADS  Google Scholar 

  140. Lee, C., Tame, M. S., Lim, J. & Lee, J. Quantum plasmonics with a metal nanoparticle array. Phys, Rev. A 85, 063823 (2012).

    Article  ADS  Google Scholar 

  141. Lee, C. et al. Robust-to-loss entanglement generation using a quantum plasmonic nanoparticle array. Preprint at http://arxiv.org/abs/1303.5092 (2013).

  142. Ballester, D., Tame, M. S. & Kim, M. S. Quantum theory of surface plasmon polariton scattering. Phys. Rev. A 82, 012325 (2010).

    Article  ADS  Google Scholar 

  143. Zou, C-L. et al. Broadband integrated polarization beamsplitter with surface plasmon. Opt. Lett. 36, 3630–3632 (2011).

    Article  ADS  Google Scholar 

  144. Shapiro, J. Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006).

    Article  ADS  Google Scholar 

  145. Walls, D. F. & Milburn, G. J. Quantum Optics (Springer, 2008).

    Book  MATH  Google Scholar 

  146. Hümmer, T., García-Vidal, F. J., Martín-Moreno, L. & Zueco, D. Weak and strong coupling regimes in plasmonic-QED. Phys. Rev. B 87, 115419 (2013).

    Article  ADS  Google Scholar 

  147. Brune, M. et al. Quantum Rabi oscillations: A direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996).

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We thank J. Takahara and C. Lee for comments on the manuscript. This work was supported by the UK’s Engineering and Physical Sciences Research Council, the Leverhulme Trust, the National Research Foundation of Korea grants funded by the Korean Government (Ministry of Education, Science and Technology; grant numbers 2010-0018295 and 2010-0015059), the European Office of Aerospace Research and Development (EOARD), and the Qatar National Research Fund (Grant NPRP 4-554-1-D84). S.K.O. thanks L. Yang and F. Nori for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Tame or S. A. Maier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tame, M., McEnery, K., Özdemir, Ş. et al. Quantum plasmonics. Nature Phys 9, 329–340 (2013). https://doi.org/10.1038/nphys2615

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2615

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing