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The chaotic dynamics of jamming
Edward J. Banigan1,2, Matthew K. Illich1, Derick J. Stace-Naughton1 and David A. Egolf1,3*

Granular materials are collections of discrete, macroscopic
particles characterized by relatively straightforward interac-
tions. Despite their apparent simplicity, these systems exhibit
a number of intriguing phenomena, including the jamming
transition, in which a disordered collection of grains becomes
rigid when its density exceeds a critical value1,2. Many aspects
of this transition have been explored, but an explanation of the
underlying dynamical mechanisms for the transition remains
elusive. Here, applying nonlinear dynamical techniques3–5 to
simulated two-dimensional Couette shear cells6–8, we reveal
the mechanisms of jamming and find that they conflict with the
prevailing picture of growing cooperative regions. In addition,
at the density corresponding to random close packing9,10, we
find a dynamical transition from chaotic to non-chaotic states
accompanied by diverging dynamical length- and timescales.
Furthermore, we find that the dominant cooperative dynamical
modes are strongly correlated with particle rearrangements
and become increasingly unstable before stress jumps, provid-
ing a way to predict the times and locations of these striking
stress-release events in our simulations.

Even after over a century of study, granular materials are
not fully understood, probably owing to the unusual importance
of dynamical aspects of their behaviour. Interestingly, granular
systems at zero temperature undergo a transition from a fluid-
like state to a rigid, disordered state known as the jamming
transition1,2,11 when the granular density is increased. These
disordered solids are intriguing (and difficult to understand) owing
to the presence of structural heterogeneities, with the internal
forces varying strongly with the material2. Under weak stress such
as slow shear or compression, the behaviour of the disordered,
heterogeneous networks of internal forces is fairly static over
extended periods of time but is occasionally punctuated by striking,
localized rearrangements of the particles.

In recent years, researchers havemade progress in understanding
the structure of granular systems near the jamming transition
by, for example, quantifying force12 and contact13 networks,
measuring quantities such as the dynamic susceptibility13–15 and
performing critical point scaling analyses16. Other work has focused
on characterizing the vibrational modes17–19, although there is
considerable controversy over the relevance of normal mode
analysis in the vicinity of the jamming transition19,20. This type of
analysis has been used well above the jamming density to predict
the locations of soft spots where rearrangement events occur18.
Yet another type of structure-based analysis, applied to a related
granular system—a free-standing pile of beads—also shows a small,
but measurable, degree of predictive power21. We take a different
approach and use the mathematics of nonlinear dynamics to reveal
and analyse the behaviours of the dominant dynamical modes of a
sheared granular system.
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Beginning about 15 years ago, a series of seminal experiments
on jamming were performed using an annular two-dimensional
(2D) Couette shear cell packed with small, bidisperse, birefringent
elastic discs at a packing density φ (refs 6–8). The inner and
outer walls of the cell were covered in treads and the inner
wall was rotated to shear the material at a constant rate. As
φ was increased over a narrow range, the total pressure in
the system increased by many orders of magnitude—the system
jammed. The grains formed a network of stress chains6–8, and
the system exhibited behaviour that was sometimes flowing and
sometimes almost static. Measurements of a variety of quantities
in experiments6–8 and simulations22,23 have provided insight into
this transition, but the dynamical mechanisms for the observed
behaviours remain unclear.

To elucidate these mechanisms, we perform molecular dy-
namics simulations of a 2D Couette shear cell and quantify the
behaviour using nonlinear dynamical techniques3–5. As shown
in Fig. 1a, we simulate N soft discs interacting through fric-
tional and dissipative elastic forces22,23 in an Lx × Ly rectangular
cell with periodic boundaries in the x-direction, parallel to the
counter-moving, treaded, shearing walls. Our system exhibits be-
haviours qualitatively similar to the corresponding experiments as
φ is varied.

The field of nonlinear dynamics provides tools for untangling
the complicated behaviour of a nonlinear system into a hierarchy of
spatiotemporal modes, organized by how much each mode drives
the dynamics. This hierarchy consists of Lyapunov vectors δu(i)(t )
and associated Lyapunov exponents λi, indexed by i= 1,2,..., and
ordered by decreasing λi. Each Lyapunov vector, δu(i)(t ), represents
a particular set of time-dependent, infinitesimal, translational
perturbations, {δr(i)j (t )}, and velocity perturbations, {δv(i)j (t )}, for
all particles. The first Lyapunov vector, δu(1)(t ), is the set of
perturbations that grows the fastest (or shrinks the slowest) on
average over the evolution of the system—the dominant collective
dynamical mode. The first Lyapunov exponent, λ1, is the average
exponential growth rate of δu(1)(t ) and can be computed as the
average of short-time growth rates λ1t

1 (t ) of δu(1)(t ) measured over
short intervals 1t (ref. 5). If λ1 > 0, the system is chaotic and thus
sensitive to small perturbations. If λ1 < 0, any perturbations decay
exponentially quickly.

The time-dependent Lyapunov vectors and their short-time
growth rates provide detailed information about the heteroge-
neous dynamics of our system. Figure 1b shows the spatial dis-
tribution of the magnitude-squared of the first Lyapunov vector,
|δu(1)

j (t0)|2=|δr
(1)
j (t0)|2+|δv

(1)
j (t0)|2, for each particle j at a time t0.

The largest components of the Lyapunov vector (red) are localized
to a small region of the cell, and |δu(1)

j (t0)|2 correlates strongly with
the square of the velocity of the jth particle, |vj(t0)|2, as can be seen
by comparing Fig. 1b to Fig. 1c.
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Figure 1 | Visualizations of the stress, Lyapunov vector and velocity fields. Colour-coding denotes the total stress on each disc, from low (blue) to high
(red). a, Schematic of an Lx×Ly simulated Couette cell with counter-moving treads (white discs) at time t0 during a stress-release event. The cell is
periodic in the x-direction and Lx= Ly=25ds. N=440 discs are packed with density φ=0.850. b, Example of the Lyapunov vector contribution |δu(1)

j (t0)|2

for each disc j at a time t0. c, The velocity-squared, |vj(t0)|2, for each disc at the same time t0.
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Figure 2 | Correlations between Lyapunov vectors and exponents and
system behaviour. a, Time-averaged particle-by-particle cross-correlations
between the Lyapunov vector field and velocity field, 〈C(1)

δu,v(t)〉t, as function
of packing density φ. Black symbols indicate the averages over all times,
whereas blue (red) symbols are the averages over times when the total
pressure is decreasing (increasing). All data are for systems of size Lx= Ly
and error bars represent the standard error. b, Blue symbols show the
behaviour of pressure changes in the time periods before and after jumps in
the pressure larger than 10 standard deviations from the mean. The data
are averaged over more than 200,000 of such events. The black symbols
show the average behaviour of the short-term growth rates λ1t

1 (t) during
the same time periods. The data shown are for φ=0.870
and Lx=4Ly .

To quantify the correlations between the Lyapunov vectors
and the disc velocity fields, we compute the particle-by-particle
cross-correlation:

C (1)
δu,v(t )

=

∑N
j=1

(
|δu(1)

j (t )|2−〈|δu(1)
k (t )|2〉k

)(
|vj(t )|2−〈|vk(t )|2〉k

)√∑N
j=1

(
|δu(1)

j (t )|2−〈|δu(1)
k (t )|2〉k

)2√∑N
j=1

(
|vj(t )|2−〈|vk(t )|2〉k

)2
As can be seen in Fig. 2a (black symbols), the two fields are
well correlated, on average. During periods of stress release
(blue symbols), the dynamics is dominated by a sequence of
rearrangement events and the correlation is remarkably strong;
a single dynamical mode typically dominates, at least for dense
systems, and C (1)

δu,v(t ) is almost perfect at many times, differing
from 1 by less than 0.0001%. (For an example, see Supplementary
Fig. S1.) The correlations are higher at larger values of φ because
fewer modes contribute to the dynamics (as quantified by the set of
Lyapunov exponents {λi}). Altogether, the connection between the
fastest moving particles and the most important dynamical modes
provides direct evidence that these localized clusters are responsible
for cooperative rearrangements. Interestingly, a similar connection
was found in supercooled colloidal fluids near the glass transition24.

A striking feature of sheared granular systems is the way stress
builds in the whole system and is then released through particle
rearrangement events in these dynamically unstable regions. These
events appear in the time-series of the total pressure P(t ) as small
jumps in P(t ) when the rearranging particles re-jam. The blue line
in Fig. 2b shows the average behaviour of 1P(t ) about a jump at
t = 0. We find that the particles involved in a rearrangement event
are in a dynamically unstable configuration for a period of time
before the instability is triggered. This is shown by the average be-
haviour of the short-time growth rate λ1t

1 (t ) (black symbols) in the
times immediately preceding pressure jumps signalling rearrange-
ment events. For a period of time before the rearrangement, the
growth rate becomes positive, indicating instability; this informa-
tion can be used to predict when these striking slip events are likely
and, through the Lyapunov vector, where the events will occur.

To understand the average dynamical properties across the
jamming transition, we measure the first Lyapunov exponent, λ1.
As shown in Fig. 3a for three different packing densities, λ1 increases
with Lx (at fixed Ly) but seems to approach an asymptotic value for
large system sizes. Figure 3b shows that the asymptotic behaviour
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Figure 3 | System size dependence of the Lyapunov exponent. a, Lyapunov
exponent λ1 as a function of system length Lx (for fixed Ly = 25ds) for three
different packing densities φ=0.828 (circles), φ=0.834 (uptriangles)
and φ=0.850 (downtriangles). b, The data in a are rescaled to show a
linear relation between λ1 and 1/Lx for each value of φ. Error bars represent
the standard error of the measurements.

of λ1(Lx) is consistent with a linear relationship between λ1 and
1/Lx at large Lx . This relationship seems to hold over a wide
range of φ, allowing us to estimate λ1 as a function of φ in the
thermodynamic limit of infinite-size systems. The filled circles in
Fig. 4a show these extrapolated infinite-size λ1 values as a function
of φ. For φ <φ∗ ≈ 0.841, where φ∗ is the jamming density, λ1 > 0
so the system is chaotic; for φ > φ∗, λ1 < 0 and the system is no
longer chaotic. (This may at first seem counter-intuitive because
particles diffuse, but chaos is not required25 for diffusion, especially
in a driven system.)

Our calculation of λ1 leads directly to a characteristic dynamical
timescale, τd = 1/|λ1|. The open squares in Fig. 4a show that as
φ∗ is approached from below, the dynamics slow markedly as the
time it takes for an arbitrary perturbation to grow becomes large;
likewise, as φ→φ∗ from above, the perturbations decay away over
an increasingly long timescale. The transition from a chaotic state
to a non-chaotic state occurs for the same range of φ over which the
stress in the system increases by several orders of magnitude—the
jamming transition. Moreover, the value of φ∗ is consistent with
the 2D random close-packing density9,10 that defines the jamming
density at zero stress11.

Our data suggest that the jamming transition in dynamical
systems (or, at least, in our sheared system) is a transition from
a chaotic state to a non-chaotic state. This can be viewed as an
extension of the idea of rigidity as the defining characteristic of
the jammed state11,26. Just as a rigid packing is stable to small
perturbations, the phase-space trajectory of our jammed, non-
chaotic system is also stable (over long times) to perturbations.
The zero-stress fluid states are unstable to perturbations, just like
our un-jammed, chaotic shear states. In both cases, the important
concept is stability; in the zero-stress case, it is stability about a fixed
point, whereas in the sheared case, it is stability about a complicated
trajectory through phase space.

The inability of the un-jammed states to build significant total
pressures seems to be due to the way the unstable events are
self-sustaining (on average). Visualizations of the Lyapunov vectors
show that the perturbations caused by one rearrangement event
propagate, and before they completely dissipate, they often trigger
another existing instability in a nearby region. For un-jammed
states, the perturbations continue to grow, propagate and trigger
other unstable regions. These sequences of events prevent the
system from building up significant stresses. For jammed states,
the perturbations, on average, die out, so they eventually stop
triggering rearrangements, allowing the bulk to build up stress (see,
for example, Supplementary Movies S1–S4). Others have studied
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Figure 4 | Time and length scales near the jamming transition. a, Filled
circles show the extrapolated infinite system size Lyapunov exponent λ1 as
a function of packing density φ. λ1 switches from positive to negative for
0.840<φ∗<0.842. Open squares show the corresponding dynamical
timescales τ = 1/|λ1|. b, Dynamical length scale ξd (in units of ds) as a
function of packing density φ approaching the jamming transition from
below. Filled circles are interpolated values and open circles are
extrapolated values. ξd is predicted to diverge at φ∗

′

=0.841 according to
the best-fit power-law ξd ∝ (φ∗

′

−φ)−1.8 shown as a solid line. The error
bars are estimates of the worst-case ranges based on the error bars of the
data points used in the interpolations and extrapolations.

correlations in rearrangement events and the propagation of plastic
deformations27,28 well above the jamming density, and similar
studies closer to the jamming transition may shed further light on
our findings. Intriguingly, we note that the size of the dynamically
cooperative regions remains finite across the jamming transition.
The average fraction of the total number of degrees of freedom
participating in the most important dynamical mode, as quantified
by the average participation ratio pN = 〈1/[N

∑N
j=1(δx

(1)
j (t ))4 +

(δy (1)j (t ))4+ (δv (1)xj (t ))
4
+ (δv (1)yj (t ))

4
]〉t for a normalized Lyapunov

vector δu(1)(t ), is almost constant across our entire range of φ
(see Supplementary Fig. S2). Thus, the cooperatively rearranging
regions remain a constant size, but the interactions over time of
these regions change with φ.

If we now reconsider Fig. 3a in light of our definition of
jammed/un-jammed as negative/positive λ1, we notice that for
small values of Lx for φ = 0.828 (circles) and φ = 0.834 (upward
triangles), the system is jammed, whereas at larger values of Lx ,
the system becomes unjammed. We observe the same behaviour
for all values of φ ≤ 0.836. Computational limitations prevent us
from simulating large enough systems for long enough times to
observe this effect directly for φ > 0.836, but extrapolations of
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λ1(Lx) indicate that the effect will continue up to φ ≈ φ∗. This
change in the dynamics suggests a definition of a characteristic
dynamical length scale, ξd , as the smallest system length Lx for
which the dynamics are chaotic. This definition of a dynamical
length scale is an approximation of the chaotic length scale, ξf ,
introduced in ref. 4 to characterize the spatial extent of one active
dynamical degree of freedom.

We calculate ξd by measuring λ1 for a variety of lengths
Lx and either interpolating between data points on ei-
ther side of λ1= 0 (0.825≤φ≤ 0.836) or extrapolating λ1(Lx)
(0.836 < φ ≤ 0.840). We find that ξd gets large as φ approaches
the jamming transition from below. The diverging length scale
is well-fitted by a power law of the form ξd ∼ (φ∗′ − φ)−α with
1.7 < α < 2.1, and the best fit, with α = 1.8 and φ∗′ = 0.841, is
shown in Fig. 4b. This value of φ∗′ is once again consistent with the
zero-stress transition at the 2D randomclose-packing density11.

Using widely applicable nonlinear dynamical techniques, we
have uncovered the dominant cooperative modes in jamming and
found that they can be used to predict the times and locations
of rearrangement events in our simulations. Intriguingly, rather
than growing in spatial extent, these modes are associated with
a diverging dynamical length scale arising from the interplay of
the density of unstable regions and the spread of disturbances. In
addition, our proposal that jamming in sheared systems is defined
by a transition from a chaotic state to a non-chaotic state provides
a rigorous and consistent definition for jamming away from the
zero-stress limit, which, until now, has been lacking2.

Methods
We simulate an Lx ×Ly shear cell populated with a 50:50 binary mixture of
N soft discs at a packing density φ = Ad/Ac , where Ad is the area covered by
the discs and Ac is the total area of the cell. The discs have a diameter ratio
of 1.4:1 with the smaller discs having a diameter of ds = 7mm. To achieve
arbitrary values of φ while maintaining a 50:50 population, the diameter ratio
is adjusted by less than 1%. The cell is periodic in the x-direction, with the
shearing walls moving at ±0.1mm s−1 and studded with semi-discs of diameter
0.8ds with centres 1.25ds apart. For all runs, Ly = 25ds, but Lx is varied. The
phase space is composed of the 2N components of the position vectors, {rj }, of
the N discs indexed by j, and the 2N components of the velocity vectors, {vj },
quantifying the deviation from a linear shear profile. We model the interactions
of the discs with each other and with the walls using Hookean forces, viscous
normal dissipation and frictional forces22,23. The discs slide on a frictionless
surface. Other material and interaction parameters22,23 are designed to match
experimental conditions6–8.

We note that the transition points φ∗ and φ∗′ are determined using discs
that are frictional in a system with a small, but finite, shear rate. Using our wall
velocities and a characteristic time based on the repulsive forces, we determine
our characteristic shear rate to be γ̇ ≈ 10−6. Careful scaling studies in ref. 16
indicate that, at this shear rate, the jamming density should be within about 0.001
or 0.002 of the no-shear jamming transition point. Frictional forces between
particles can markedly lower the jamming transition point29; however, we expect
that those effects are small in our system because of the form of our frictional
forces. To avoid a discontinuity at zero relative tangential velocity v(t )ij , we employ
a frictional force that is proportional to v(t )ij when v(t )ij is small and then switches
to Coulombic friction at larger velocities22,23. Owing to our slow shear rate, most
velocities are small, except during rearrangement events, and so our effective
friction coefficient is quite small, especially during nearly static times. We expect
that the jamming point will not be affected by this friction to within the precision
of our measurements.

As we know the equations describing the evolution of our N -disc system,
we can perform a standard derivation of the tangent space4,5 to determine
the equations for the time-dependent Lyapunov vectors (and corresponding
Lyapunov exponents) describing the geometry of the attractor in its phase space.
This process avoids the problem of finding recurrences in a high-dimensional
phase space, as would be necessary if we had only observed data. The equation
for each Lyapunov vector, δu(i)(t ), describes the evolution of a particular set
of infinitesimal translational perturbations, {δr(i)j }, and infinitesimal velocity
perturbations, {δv(i)j }, for all particles. The first Lyapunov vector is the set
of evolving perturbations that will grow the fastest (or shrink the slowest)
over infinite time. We note that these are true dynamical quantities—the
first Lyapunov vector at time t does not represent the most unstable mode
at that moment; it is the time-dependent state that is the most unstable
mode of the long-time evolution of the entire system through its phase space.

Even though there are 4N Lyapunov vectors describing the structure of the
attractor in phase space, the first Lyapunov vector is easily found by evolving a
random set of perturbations. As the first Lyapunov vector grows exponentially
faster (or shrinks exponentially slower) than any other Lyapunov vector, the
component of the initial random perturbations aligned with the first vector
will dominate after a short time. The second Lyapunov vector can be found by
evolving another set of perturbations and projecting out the first vector, and
so on. The Lyapunov exponents are the growth rates of the Lyapunov vectors
averaged over long times.

We integrate the equations for the Lyapunov vectors and the equations
for the underlying N -disc system using a fifth-order Gear predictor–corrector
algorithm30 with a time step of 1t = 0.00004 s. The discs are initially placed
in a random, non-overlapping pattern in a cell Lx ×3Ly and then the walls are
slowly moved closer until the cell is Lx ×Ly . After that, we typically wait 200 s
before recording data for 400 s. The Lyapunov vectors δu(i)(t ) are renormalized
(
∑

j |δu
(i)
j |

2
= 1) and short-time growth rates λ1t

i (t ) are calculated at each
time step. To isolate the dynamics of the particle network, particles with 0
or 1 disc or wall interactions and particles with 2 interactions that are part
of a chain with a free end are excluded from the Lyapunov vectors during
that time step, and growth rate calculations are adjusted accordingly. To
obtain the desired level of accuracy for measurements of quantities such as
Lyapunov exponents, averages are calculated using several hundred runs of
different initial conditions.
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