Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum dynamics of a mobile spin impurity

Abstract

One of the elementary processes in quantum magnetism is the propagation of spin excitations. Here we study the quantum dynamics of a deterministically created spin-impurity atom, as it propagates in a one-dimensional lattice system. We probe the spatial probability distribution of the impurity at different times using single-site-resolved imaging of bosonic atoms in an optical lattice. In the Mott-insulating regime, the quantum-coherent propagation of a magnetic excitation in the Heisenberg model can be observed using a post-selection technique. Extending the study to the superfluid regime of the bath, we quantitatively determine how the bath affects the motion of the impurity, showing evidence of polaronic behaviour. The experimental data agree with theoretical predictions, allowing us to determine the effect of temperature on the impurity motion. Our results provide a new approach to studying quantum magnetism, mobile impurities in quantum fluids and polarons in lattice systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coherent propagation of a single spin excitation in the Heisenberg model.
Figure 2: Dynamics of a mobile spin impurity.
Figure 3: Effect of thermal excitations on the coherent spin dynamics.
Figure 4: Spin dynamics across the superfluid-to-Mott-insulator transition.
Figure 5: Influence of the impurity on the superfluid bath.

Similar content being viewed by others

References

  1. Auerbach, A. Interacting Electrons and Quantum Magnetism (Springer, 1998).

    Google Scholar 

  2. Douçot, B. & Zinn-Justin, J. (eds) Proceedings of the Les Houches Summer School, Session LVI (Elsevier, 1995).

  3. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  ADS  Google Scholar 

  4. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  ADS  Google Scholar 

  5. Cazalilla, M., Citro, R., Giamarchi, T., Orignac, E. & Rigol, M. One dimensional bosons: From condensed matter systems to ultracold gases. Rev. Mod. Phys. 83, 1405–1466 (2011).

    Article  ADS  Google Scholar 

  6. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  7. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  ADS  Google Scholar 

  8. Trotzky, S. et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008).

    Article  ADS  Google Scholar 

  9. Nascimbène, S. et al. Experimental realization of plaquette resonating valence-bond states with ultracold atoms in optical superlattices. Phys. Rev. Lett. 108, 205301 (2012).

    Article  ADS  Google Scholar 

  10. Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

    Article  ADS  Google Scholar 

  11. Sherson, J. F. et al. Single-atom resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    Article  ADS  Google Scholar 

  12. Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

    Article  ADS  Google Scholar 

  13. Kuklov, A. & Svistunov, B. Counterflow superfluidity of two-species ultracold atoms in a commensurate optical lattice. Phys. Rev. Lett. 90, 100401 (2003).

    Article  ADS  Google Scholar 

  14. Duan, L-M., Demler, E. & Lukin, M. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).

    Article  ADS  Google Scholar 

  15. Garcı´a-Ripoll, J. J. & Cirac, J. I. Spin dynamics for bosons in an optical lattice. New J. Phys. 5, 76 (2003).

    Article  Google Scholar 

  16. Altman, E., Hofstetter, W., Demler, E. & Lukin, M. D. Phase diagram of two-component bosons on an optical lattice. New J. Phys. 5, 113 (2003).

    Article  ADS  Google Scholar 

  17. Feynman, R. P. Statistical Mechanics (W. A. Benjamin, 1972).

    Google Scholar 

  18. Endres, M. et al. Observation of correlated particle–hole pairs and string order in low-dimensional Mott insulators. Science 334, 200–203 (2011).

    Article  ADS  Google Scholar 

  19. Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011).

    Article  ADS  Google Scholar 

  20. Konno, N. Limit theorem for continuous-time quantum walk on the line. Phys. Rev. E 72, 026113 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  21. Giamarchi, T. Quantum Physics in one Dimension (Oxford Univ. Press, 2004).

    MATH  Google Scholar 

  22. Mahan, G. D. Many-Particle Physics (Plenum, 1981).

    Google Scholar 

  23. Zvonarev, M. B., Cheianov, V. V. & Giamarchi, T. Spin dynamics in a one-dimensional ferromagnetic Bose gas. Phys. Rev. Lett. 99, 240404 (2007).

    Article  ADS  Google Scholar 

  24. Romero, A. H., Brown, D. W. & Lindenberg, K. Electron–phonon correlations, polaron size, and the nature of the self-trapping transition. Phys. Lett. A 266, 414–420 (2000).

    Article  ADS  Google Scholar 

  25. Schirotzek, A., Wu, C-H., Sommer, A. & Zwierlein, M. W. Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms. Phys. Rev. Lett. 102, 230402 (2009).

    Article  ADS  Google Scholar 

  26. Palzer, S., Zipkes, C., Sias, C. & Köhl, M. Quantum transport through a Tonks-Girardeau gas. Phys. Rev. Lett. 103, 150601 (2009).

    Article  ADS  Google Scholar 

  27. Nascimbène, S. et al. Collective oscillations of an imbalanced Fermi gas: Axial compression modes and polaron effective mass. Phys. Rev. Lett. 103, 170402 (2009).

    Article  ADS  Google Scholar 

  28. Johnson, T., Clark, S., Bruderer, M. & Jaksch, D. Impurity transport through a strongly interacting bosonic quantum gas. Phys. Rev. A 84, 023617 (2011).

    Article  ADS  Google Scholar 

  29. Catani, J. et al. Quantum dynamics of impurities in a one-dimensional Bose gas. Phys. Rev. A 85, 023623 (2012).

    Article  ADS  Google Scholar 

  30. Koschorreck, M. et al. Attractive and repulsive Fermi polarons in two dimensions. Nature 485, 619–622 (2012).

    Article  ADS  Google Scholar 

  31. Schecter, M., Kamenev, A., Gangardt, D. & Lamacraft, A. Critical velocity of a mobile impurity in one-dimensional quantum liquids. Phys. Rev. Lett. 108, 207001 (2012).

    Article  ADS  Google Scholar 

  32. Spethmann, N. et al. Dynamics of single neutral impurity atoms immersed in an ultracold gas. Phys. Rev. Lett. 109, 235301 (2012).

    Article  ADS  Google Scholar 

  33. Zvonarev, M., Cheianov, V. & Giamarchi, T. Dynamical properties of the one-dimensional spin-1/2 Bose–Hubbard model near a Mott-insulator to ferromagnetic-liquid transition. Phys. Rev. Lett. 103, 110401 (2009).

    Article  ADS  Google Scholar 

  34. Ganahl, M., Rabel, E., Essler, F. & Evertz, H. Observation of complex bound states in the spin-1/2 Heisenberg XXZ chain using local quantum quenches. Phys. Rev. Lett. 108, 077206 (2012).

    Article  ADS  Google Scholar 

  35. Gobert, D., Kollath, C., Schollwöck, U. & Schütz, G. Real-time dynamics in spin-1/2 chains with adaptive time-dependent density matrix renormalization group. Phys. Rev. E 71, 036102 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  36. Liang, J., Kohn, R. N., Becker, M. F. & Heinzen, D. J. 1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator. Appl. Opt. 48, 1955–1962 (2009).

    Article  ADS  Google Scholar 

  37. Vidal, G. Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93, 040502 (2004).

    Article  ADS  Google Scholar 

  38. Daley, A. J., Kollath, C., Schollwöck, U. & Vidal, G. Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces. J. Stat. Mech. Theor. Exp. P04005 (2004).

  39. White, S. R. & Feiguin, A. E. Real-time evolution using the density matrix renormalization group. Phys. Rev. Lett. 93, 076401 (2004).

    Article  ADS  Google Scholar 

  40. Verstraete, F., Garcı´a-Ripoll, J. J. & Cirac, J. I. Matrix product density operators: Simulation of finite-temperature and dissipative systems. Phys. Rev. Lett. 93, 207204 (2004).

    Article  ADS  Google Scholar 

  41. Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–315 (2005).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank C. Weitenberg for his contribution to the addressing scheme. This work was supported by MPG, DFG, EU (NAMEQUAM, AQUTE, Marie Curie Fellowship to M.C.) and JSPS (Postdoctoral Fellowship for Research Abroad to T.F.) and in part by the Swiss NSF under MaNEP and Division II.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to Takeshi Fukuhara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuhara, T., Kantian, A., Endres, M. et al. Quantum dynamics of a mobile spin impurity. Nature Phys 9, 235–241 (2013). https://doi.org/10.1038/nphys2561

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2561

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing