Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identifying topological order by entanglement entropy

Abstract

Topological phases are unique states of matter that incorporate long-range quantum entanglement and host exotic excitations with fractional quantum statistics. Here we report a practical method to identify topological phases in arbitrary realistic models by accurately calculating the topological entanglement entropy using the density matrix renormalization group (DMRG). We argue that the DMRG algorithm systematically selects a minimally entangled state from the quasi-degenerate ground states in a topological phase. This tendency explains both the success of our method and the absence of ground-state degeneracy in previous DMRG studies of topological phases. We demonstrate the effectiveness of our procedure by obtaining the topological entanglement entropy for several microscopic models, with an accuracy of the order of 10−3, when the circumference of the cylinder is around ten times the correlation length. As an example, we definitively show that the ground state of the quantum S = 1/2 antiferromagnet on the kagome lattice is a topological spin liquid, and strongly constrain the conditions for identification of this phase of matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evidence that the DMRG favours MESs.
Figure 2: The von Neumann entropy S(Ly) for the toric-code model in magnetic fields.
Figure 3: The entanglement entropy S(Ly) of the kagome J1J2 model in equation (2), with Ly = 4–12 at .

Similar content being viewed by others

References

  1. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  2. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  3. Anderson, P. W. Resonating valence bonds: A new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).

    Article  Google Scholar 

  4. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  ADS  Google Scholar 

  5. Kitaev, A. & Preskill, J. Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  6. Levin, M. & Wen, X-G. Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96, 110405 (2006).

    Article  ADS  Google Scholar 

  7. White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).

    Article  ADS  Google Scholar 

  8. Stoudenmire, E. M. & White, S. R. Studying two dimensional systems with the density matrix renormalization group. Annu. Rev. Condens. Matter Phys. 3, 111–128 (2012).

    Article  Google Scholar 

  9. Dong, S., Fradkin, E., Leigh, R. G. & Nowling, S. Topological entanglement entropy in Chern-Simons theories and quantum Hall fluids. J. High Energy Phys. 05, 016 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  10. Zhang, Y., Grover, T., Turner, A., Oshikawa, M. & Vishwanath, A. Quasiparticle statistics and braiding from ground-state entanglement. Phys. Rev. B 85, 235151 (2012).

    Article  ADS  Google Scholar 

  11. Furukawa, S. & Misguich, G. Topological entanglement entropy in the quantum dimer model on the triangular lattice. Phys. Rev. B 75, 214407 (2007).

    Article  ADS  Google Scholar 

  12. Isakov, S. V., Hastings, M. B. & Melko, R. G. Topological entanglement entropy of a Bose–Hubbard spin liquid. Nature Phys. 7, 772–775 (2011).

    Article  ADS  Google Scholar 

  13. Jiang, H. C., Yao, H. & Balents, L. Spin liquid ground state of the spin- 1/2 square J1–J2 Heisenberg model. Phys. Rev. B 86, 024424 (2012).

    Article  ADS  Google Scholar 

  14. Trebst, S., Werner, P., Troyer, M., Shtengel, K. & Nayak, C. Breakdown of a topological phase: Quantum phase transition in a loop gas model with tension. Phys. Rev. Lett. 98, 070602 (2007).

    Article  ADS  Google Scholar 

  15. Jiang, H. C., Weng, Z. Y. & Sheng, D. N. Density matrix renormalization group numerical study of the kagome antiferromagnet. Phys. Rev. Lett. 101, 117203 (2008).

    Article  ADS  Google Scholar 

  16. Yan, S., Huse, D. & White, S. Spin-liquid ground state of the S = 1/2 kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011).

    Article  ADS  Google Scholar 

  17. White, S. R. The spin liquid ground state of the S = 1/2 Heisenberg model on the kagome lattice. Bull. Am. Phys. Soc. 57 MAR.L19.1 (2012); available at http://meetings.aps.org/link/BAPS.2012.MAR.L19.1.

  18. Wen, X. G. Mean-field theory of spin-liquid states with finite energy gap and topological orders. Phys. Rev. B 44, 2664–2672 (1991).

    Article  ADS  Google Scholar 

  19. Read, N. & Sachdev, S. Large- N expansion for frustrated quantum antiferromagnets. Phys. Rev. Lett. 66, 1773–1776 (1991).

    Article  ADS  Google Scholar 

  20. Rowell, E., Stong, R. & Wang, Z. On classification of modular tensor categories. Commun. Math. Phys. 292, 343–389 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  21. Depenbrock, S., McCulloch, I. P. & Schollwoeck, U. Nature of the spin-liquid ground state of the S = 1/2 Heisenberg model on the Kagome lattice. Phys. Rev. Lett. 109, 067201 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank T. Grover and A. Vishwanath for a helpful explanation of their work, and S. White for helpful discussions. H.C.J. thanks H. Yao for collaboration on related projects. This work was supported by the NSF through grant DMR 0804564 (L.B.), the NSF MRSEC Program under DMR 1121053, the NBRPC (973 Program) 2011CBA00300 (2011CBA00302), and benefited from the facilities of the KITP, supported by NSF PHY05-51164.

Author information

Authors and Affiliations

Authors

Contributions

H.C.J. developed the simulation codes and performed the numerical experiments. All authors were equally responsible for writing the manuscript.

Corresponding author

Correspondence to Leon Balents.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 663 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, HC., Wang, Z. & Balents, L. Identifying topological order by entanglement entropy. Nature Phys 8, 902–905 (2012). https://doi.org/10.1038/nphys2465

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2465

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing