Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strong Coulomb drag and broken symmetry in double-layer graphene

This article has been updated

Abstract

Coulomb drag is a frictional coupling between electric currents flowing in spatially separated conducting layers. It is caused by interlayer electron–electron interactions. Previously, only the regime of weak (dl) to intermediate (dl) coupling could be studied experimentally, where dis the interlayer separation and l is the characteristic distance between charge carriers. Here we use graphene–boron-nitride heterostructures with d down to 1 nm to probe Coulomb drag in the limit dl such that the two Dirac liquids effectively nest within the same plane, but can still be tuned and measured independently. The strongly interacting regime reveals many unexpected features. In particular, although drag vanishes because of electron–hole symmetry when either layer is neutral, we often find drag strongest when both layers are neutral. Under this circumstance, drag is positive in zero magnetic field but changes its sign and rapidly grows in strength with field. The drag remains strong at room temperature. The broken electron–hole symmetry is attributed to mutual polarization of closely spaced interacting layers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coulomb drag in double-layer graphene heterostructures in zero magnetic field.
Figure 2: Functional dependences of Coulomb drag away from the neutrality point.
Figure 3: Broken symmetry in neutral double-layer graphene.

Similar content being viewed by others

Change history

  • 19 October 2012

    In the version of this Article originally published online, the unit on the y axis of Fig. 3c was incorrect, it should have read "ρdrag (Ω)". This error has been corrected in all versions of the Article.

References

  1. Solomon, P. M., Price, P. J., Frank, D. J. & La Tulipe, D. C. New phenomena in coupled transport between 2D and 3D electron-gas layers. Phys. Rev. Lett. 63, 2508–2511 (1989).

    Article  ADS  Google Scholar 

  2. Gramila, T. J., Eisenstein, J. P., MacDonald, A. H., Pfeiffer, L. N. & West, K. W. Mutual friction between parallel two-dimensional electron systems. Phys. Rev. Lett. 66, 1216–1219 (1991).

    Article  ADS  Google Scholar 

  3. Sivan, U., Solomon, P. M. & Shtrikman, H. Coupled electron-hole transport. Phys. Rev. Lett. 68, 1196–1199 (1992).

    Article  ADS  Google Scholar 

  4. Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).

    Article  ADS  Google Scholar 

  5. Rojo, A. G. Electron-drag effects in coupled electron systems. J. Phys. 11, 31–52 (1999).

    Google Scholar 

  6. Suen, Y. W., Engel, L. W., Santos, M. B., Shayegan, M. & Tsui, D. C. Observation of a ν = 1/2 fractional quantum Hall state in a double-layer electron system. Phys. Rev. Lett. 68, 1379–1382 (1992).

    Article  ADS  Google Scholar 

  7. Eisenstein, J. P., Boebinger, G. S., Pfeiffer, L. N., West, K. W. & He, S. New fractional quantum Hall state in double-layer two-dimensional electron systems. Phys. Rev. Lett. 68, 1383–1386 (1992).

    Article  ADS  Google Scholar 

  8. Luhman, D. R. et al. Observation of a fractional quantum Hall state at ν = 1/4 in a wide GaAs quantum well. Phys. Rev. Lett. 101, 266804 (2008).

    Article  ADS  Google Scholar 

  9. Kellogg, M., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Vanishing Hall resistance at high magnetic field in a double-layer two-dimensional electron system. Phys. Rev. Lett. 93, 036801 (2004).

    Article  ADS  Google Scholar 

  10. Tutuc, E., Shayegan, M. & Huse, D. A. Counterflow measurements in strongly correlated GaAs hole bilayers: Evidence for electron–hole pairing. Phys. Rev. Lett. 93, 036802 (2004).

    Article  ADS  Google Scholar 

  11. Yoon, Y. et al. Interlayer tunneling in counterflow experiments on the excitonic condensate in quantum Hall bilayers. Phys. Rev. Lett. 104, 116802 (2010).

    Article  ADS  Google Scholar 

  12. Croxall, A. F. et al. Anomalous Coulomb drag in electron–hole bilayers. Phys. Rev. Lett. 101, 246801 (2008).

    Article  ADS  Google Scholar 

  13. Seamons, J. A., Morath, C. P., Reno, J. L. & Lilly, M. P. Coulomb drag in the exciton regime in electron–hole bilayers. Phys. Rev. Lett. 102, 026804 (2009).

    Article  ADS  Google Scholar 

  14. Lozovik, Y. E. & Yudson, V. I. Superconductivity at dielectric pairing of spatially separated quasiparticles. Solid State Commun. 19, 391–393 (1976).

    Article  ADS  Google Scholar 

  15. Min, H., Bistritzer, R., Su, J. J. & MacDonald, A. H. Room-temperature superfluidity in graphene bilayers. Phys. Rev. B 78, 121401 (2008).

    Article  ADS  Google Scholar 

  16. Kim, S. et al. Coulomb drag of massless fermions in graphene. Phys. Rev. B 83, 161401 (2011).

    Article  ADS  Google Scholar 

  17. Pillarisetty, R. et al. Coulomb drag near the metal–insulator transition in two dimensions. Phys. Rev. B 71, 115307 (2005).

    Article  ADS  Google Scholar 

  18. Ponomarenko, L. A. et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nature Phys. 7, 958–961 (2011).

    Article  ADS  Google Scholar 

  19. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    Article  ADS  Google Scholar 

  20. Lee, G. H. et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 99, 243114 (2011).

    Article  ADS  Google Scholar 

  21. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

    Article  ADS  Google Scholar 

  22. Tse, W. K., Hu, B. Y. K. & Das Sarma, S. Theory of Coulomb drag in graphene. Phys. Rev. B 76, 081401 (2007).

    Article  ADS  Google Scholar 

  23. Katsnelson, M. I. Coulomb drag in graphene single layers separated by a thin spacer. Phys. Rev. B 84, 041407 (2011).

    Article  ADS  Google Scholar 

  24. Peres, N. M. R., Lopes dos Santos, J. M. B. & Castro Neto, A. H. Coulomb drag and high-resistivity behavior in double-layer graphene. Europhys. Lett. 95, 18001 (2011).

    Article  ADS  Google Scholar 

  25. Hwang, E. H., Sensarma, R. & Das Sarma, S. Coulomb drag in monolayer and bilayer graphene. Phys. Rev. B 84, 245441 (2011).

    Article  ADS  Google Scholar 

  26. Narozhny, B. N., Titov, M., Gornyi, I. V. & Ostrovsky, P. M. Coulomb drag in graphene: perturbation theory. Phys. Rev. B 85, 201405 (2012).

    Article  Google Scholar 

  27. Carrega, M., Tudorovskiy, T., Principi, A., Katsnelson, M.I. & Polini, M. Theory of Coulomb drag for massless Dirac fermions. New J. Phys. 14, 063033 (2012).

    Article  ADS  Google Scholar 

  28. Amorim, B. & Peres, N. M. R. On Coulomb drag in double layer systems. J. Phys. 24, 335602 (2012).

    Google Scholar 

  29. Kharitonov, M. Y. & Efetov, K. B. Excitonic condensation in a double-layer graphene system. Semicond. Sci. Technol. 25, 034004 (2010).

    Article  ADS  Google Scholar 

  30. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

    Article  ADS  Google Scholar 

  31. Ponomarenko, L. A. et al. Density of states and zero Landau level probed through capacitance of graphene. Phys. Rev. Lett. 105, 136801 (2010).

    Article  ADS  Google Scholar 

  32. Tutuc, E. & Kim, S. Magnetotransport and Coulomb drag in graphene double layers. Solid State Commun. 15, 1283–1288 (2012).

    Google Scholar 

  33. Price, A. S., Savchenko, A. K., Narozhny, B. N., Allison, G. & Ritchie, D. A. Giant fluctuations of Coulomb drag in a bilayer system. Science 316, 99–102 (2007).

    Article  ADS  Google Scholar 

  34. Young, A. F. et al. Spin and valley quantum Hall ferromagnetism in graphene. Nature Phys. 8, 550–556 (2012).

    Article  ADS  Google Scholar 

  35. Schütt, M. et al. Coulomb drag in graphene near the Dirac point. Preprint at http://arxiv.org/abs/1205.5018 (2012).

  36. Song, J. C. W. & Levitov, L. S. Energy-driven drag at charge neutrality in graphene. Preprint at http://arxiv.org/abs/1205.5257 (2012).

  37. Gibertini, M., Tomadin, A., Guinea, F., Katsnelson, M. I. & Polini, M. Electron-hole puddles in the absence of charged impurities. Phys. Rev. B 85, 201405 (2012).

    Article  ADS  Google Scholar 

  38. Kellogg, M., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Bilayer quantum Hall systems at νT = 1: Coulomb drag and the transition from weak to strong interlayer coupling. Phys. Rev. Lett. 90, 246801 (2003).

    Article  ADS  Google Scholar 

  39. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  40. Novoselov, K. S. et al. Room temperature quantum Hall effect in graphene. Science 315, 1379 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank L. Levitov, M. Titov and A. Castro Neto for helpful discussions. This work was supported by the Royal Society, the Körber Foundation, Engineering and Physical Sciences Research Council (UK), the Office of Naval Research and the Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Contributions

L.A.P., R.V.G. and A.K.G. devised the project. K.W. and T.Ta. provided hBN crystals. R.V.G. designed and fabricated the heterostructures. L.A.P. carried out measurements and analysed the results. M.I.K., T.Tu. and A.H.M. provided theoretical support. A.K.G. wrote the paper. M.I.K. and T.Tu drafted the theory part of the Supplementary Information. K.S.N., I.V.G. and S.V.M. helped with experiments and/or writing the paper. All authors contributed to discussions.

Corresponding authors

Correspondence to A. K. Geim or L. A. Ponomarenko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 964 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbachev, R., Geim, A., Katsnelson, M. et al. Strong Coulomb drag and broken symmetry in double-layer graphene. Nature Phys 8, 896–901 (2012). https://doi.org/10.1038/nphys2441

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2441

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing