Abstract

Spin information processing is a possible new paradigm for post-CMOS (complementary metal-oxide semiconductor) electronics and efficient spin propagation over long distances is fundamental to this vision. However, despite several decades of intense research, a suitable platform is still wanting. We report here on highly efficient spin transport in two-terminal polarizer/analyser devices based on high-mobility epitaxial graphene grown on silicon carbide. Taking advantage of high-impedance injecting/detecting tunnel junctions, we show spin transport efficiencies up to 75%, spin signals in the mega-ohm range and spin diffusion lengths exceeding 100 μm. This enables spintronics in complex structures: devices and network architectures relying on spin information processing, well beyond present spintronics applications, can now be foreseen.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

  2. 2.

    & Performance of a spin-based insulated gate field effect transistor. Appl. Phys. Lett. 88, 162503 (2006).

  3. 3.

    , , & Spin-based logic in semiconductors for reconfigurable large scale circuits. Nature 447, 573–576 (2007).

  4. 4.

    , , & Proposal for an all-spin logic device with built-in memory. Nature Nanotech. 5, 266–270 (2010).

  5. 5.

    , , , & Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713–716 (2002).

  6. 6.

    , , , & Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009).

  7. 7.

    et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nature Phys. 3, 197–202 (2007).

  8. 8.

    et al. Electrical injection and detection of spin-polarized carriers in silicon in a lateral transport geometry. Appl. Phys. Lett. 91, 212109 (2007).

  9. 9.

    Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267–R16270 (2000).

  10. 10.

    & Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001).

  11. 11.

    , , & Semiconductors between spin-polarized sources and drains. IEEE Trans. Electron Dev. 54, 921–932 (2007).

  12. 12.

    , & Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74, 155426 (2006).

  13. 13.

    et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410–413 (2007).

  14. 14.

    , , , & Graphene spin valve devices. IEEE Trans. Magn. 42, 2694–2696 (2006).

  15. 15.

    , , , & Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

  16. 16.

    et al. Magnetotransport properties of mesoscopic graphite spin valves. Phys. Rev. B 77, 020402 (2008).

  17. 17.

    et al. Spin injection into a graphene thin film at room temperature. Jpn. J. Appl. Phys. 46, 605–607 (2007).

  18. 18.

    et al. Gate control of spin transport in multilayer graphene. Appl. Phys. Lett. 92, 212110 (2008).

  19. 19.

    et al. Tunneling spin injection into single layer graphene. Phys. Rev. Lett. 105, 167202 (2010).

  20. 20.

    et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl Acad. Sci. USA 108, 16900–16905 (2011).

  21. 21.

    et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

  22. 22.

    et al. First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 103, 226803 (2009).

  23. 23.

    et al. Why multilayer graphene on 4H-SiC(000 ) behaves like a single sheet of graphene. Phys. Rev. Lett. 100, 125504 (2008).

  24. 24.

    & Spin currents in metals and superconductors. J. Phys. Soc. Jpn 77, 031009 (2008).

  25. 25.

    , & Spin transport in multiterminal devices: Large spin signals in devices with confined geometry. Phys. Rev. B 82, 140108 (2010).

  26. 26.

    , & Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

  27. 27.

    et al. Magnetoresistance in magnetic tunnel junctions grown on flexible organic substrates. Appl. Phys. Lett. 96, 072502 (2010).

  28. 28.

    et al. Linear scaling between momentum and spin scattering in graphene. Phys. Rev. B 80, 241403 (2009).

  29. 29.

    et al. Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nature Mater. 10, 527–531 (2011).

  30. 30.

    et al. Spin precession and inverted Hanle effect in a semiconductor near a finite-roughness ferromagnetic interface. Phys. Rev. B 84, 054410 (2011).

  31. 31.

    et al. Corrugation in exfoliated graphene: an electron microscopy and diffraction study. ACS Nano 4, 4879–4889 (2010).

  32. 32.

    , , & Atomic and electronic structure of monolayer graphene on 6H-SiC(000 ) (3×3): A scanning tunneling microscopy study. Phys. Rev. B 80, 235429 (2009).

  33. 33.

    et al. Are Al2O3 and MgO tunnel barriers suitable for spin injection in graphene? Appl. Phys. Lett. 97, 092502 (2010).

  34. 34.

    et al. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008).

Download references

Acknowledgements

We thank H. Jaffrès for helpful discussions. This research was partially supported by the W M Keck Foundation and the NSF under Grant No DMR-0820382. This research was partially supported by the EU FP7 work programme under grant GRAFOL. P.S. wants to acknowledge the Institut Universitaire de France for junior fellowship support.

Author information

Affiliations

  1. Unité Mixte de Physique CNRS/Thales, 91767 Palaiseau, France associée à l’Université de Paris-Sud 11, 91405 Orsay, France

    • Bruno Dlubak
    • , Marie-Blandine Martin
    • , Cyrile Deranlot
    • , Richard Mattana
    • , Frédéric Petroff
    • , Abdelmadjid Anane
    • , Pierre Seneor
    •  & Albert Fert
  2. Thales Research and Technology, 91767 Palaiseau, France

    • Bernard Servet
    •  & Stéphane Xavier
  3. School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

    • Mike Sprinkle
    • , Claire Berger
    •  & Walt A. De Heer
  4. CNRS-Institut Néel, 38042 Grenoble, France

    • Claire Berger

Authors

  1. Search for Bruno Dlubak in:

  2. Search for Marie-Blandine Martin in:

  3. Search for Cyrile Deranlot in:

  4. Search for Bernard Servet in:

  5. Search for Stéphane Xavier in:

  6. Search for Richard Mattana in:

  7. Search for Mike Sprinkle in:

  8. Search for Claire Berger in:

  9. Search for Walt A. De Heer in:

  10. Search for Frédéric Petroff in:

  11. Search for Abdelmadjid Anane in:

  12. Search for Pierre Seneor in:

  13. Search for Albert Fert in:

Contributions

B.D., M-B.M. A.A. and P.S. carried out the whole project, including planning, experimental work, data analysis and writing of the paper. R.M., F.P. and A.F. also discussed the results. A.F. also participated in writing of the paper. C.D., B.S. and S.X. contributed to sample fabrication and characterization. M.S., C.B. and W.A.D.H. grew and characterized the epitaxial graphene layers. All authors participated in general discussions and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Pierre Seneor.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys2331

Further reading