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Feynman diagrams versus Fermi-gas
Feynman emulator
K. Van Houcke1,2*, F. Werner1,3, E. Kozik4,5, N. Prokof’ev1,6, B. Svistunov1,6, M. J. H. Ku7,
A. T. Sommer7, L. W. Cheuk7, A. Schirotzek8 and M.W. Zwierlein7

Precise understanding of strongly interacting fermions, from
electrons in modern materials to nuclear matter, presents
a major goal in modern physics. However, the theoretical
description of interacting Fermi systems is usually plagued
by the intricate quantum statistics at play. Here we present
a cross-validation between a new theoretical approach, bold
diagrammatic Monte Carlo1–3, and precision experiments on
ultracold atoms. Specifically, we compute and measure, with
unprecedented precision, the normal-state equation of state of
the unitary gas, a prototypical example of a strongly correlated
fermionic system4–6. Excellent agreement demonstrates that a
series of Feynman diagrams can be controllably resummed in a
non-perturbative regime using bold diagrammatic Monte Carlo.

In his seminal 1981 lecture7, Richard Feynman argued that
an arbitrary quantum system cannot be efficiently simulated
with a classical universal computer, because generally, quantum
statistics can only be imitated with a classical theory if probabilities
are replaced with negative (or complex) weighting factors. For
the majority of many-particle models this indeed leads to the
so-called sign problem, which has remained an insurmountable
obstacle. According to Feynman, the only way out is to employ
computersmade out of quantum-mechanical elements7. The recent
experimental breakthroughs in cooling, probing and controlling
strongly interacting quantum gases prompted a challenging
effort to use this new form of quantum matter to realize
Feynman’s emulators of fundamental microscopic models7,8.
Somewhat ironically, Feynman’s arguments, which led him to the
idea of emulators, may be defied by a theoretical method that
he himself devised, namely Feynman diagrams. This technique
organizes the calculation of a given physical quantity as a series of
diagrams representing all the possible ways particles can propagate
and interact (for example, ref. 9). For the many-body problem, this
diagrammatic expansion is commonly used either in perturbative
regimes or within uncontrolled approximations. However, the
introduction of diagrammatic Monte Carlo recently allowed one to
go well beyond the first few diagrams, and even reach convergence
of the series in amoderately correlated regime1,10.

In this Letter we show that for a strongly correlated system and
down to a phase transition, the diagrammatic series can still be
given a mathematical meaning and leads to controllable results
within bold diagrammatic Monte Carlo (BDMC). This approach,
proposed in refs 1–3, is first implemented here for the many-body
problem. We focus on the unitary gas, that is, spin-1/2 fermions
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with zero-range interactions at infinite scattering length4–6. This
system offers the unique possibility to stringently test our theory
against a quantum emulator realized here with trapped ultracold
6Li atoms at a broad Feshbach resonance4–6. This experimental
validation is indispensable for our theory, based on resummation of
a possibly divergent series: although the physical answer is shown to
be independent of the applied resummation technique—suggesting
that the procedure is adequate—its mathematical validity remains
to be proven. In essence, nature provides the ‘proof’. This presents
the first—although long-anticipated—compelling example of how
ultracold atoms can guide new microscopic theories for strongly
interacting quantummatter.

At unitarity, the disappearance of an interaction-imposed length
scale leads to scale invariance. This property renders the model
relevant for other physical systems such as neutron matter. It
also makes the balanced (that is, spin-unpolarized) unitary gas
ideally suited for the experimental high-precision determination
of the equation of state (EOS) described below. Finally, it
implies the absence of a small parameter, making the problem
notoriously difficult to solve.

In traditional Monte Carlo approaches, which simulate a
finite piece of matter, the sign problem causes an exponential
increase of the computing time with system size and inverse
temperature. In contrast, BDMC simulates a mathematical answer
in the thermodynamic limit. This radically changes the role of the
fermionic sign. Diagrammatic contributions are sign-alternating
with order, topology and values of internal variables. Because
the number of graphs grows factorially with diagram order, a
near-cancellation between these contributions is actually necessary
for the series to be resummable by techniques requiring a
finite radius of convergence. We find that this ‘sign blessing’
indeed takes place.

In essence, BDMC solves the full quantum many-body problem
by stochastically summing all the skeleton diagrams for irreducible
single-particle self-energy Σ and pair self-energy Π , expressed
in terms of bold (that is, fully dressed) single-particle and pair
propagators G and Γ which are determined self-consistently
(Fig. 1). The density EOS (that is, the relation between total density
n, chemical potential µ and temperature T ) is given by G at
zero distance and imaginary time, n(µ,T ) = 2G(r = 0,τ = 0−).
The thermodynamic limit can be taken analytically. The sum of
ladder diagrams built on the bare single-particle propagator defines
a partially dressed pair propagator Γ 0. As Γ 0 is well defined
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Figure 1 | Bold diagrammatic Monte Carlo The skeleton diagrammatic
series for the self-energy Σ and the pair self-energy Π is evaluated
stochastically (lower box). The diagrams are built on dressed one-body
propagators G and pair propagators Γ , which themselves are the solution
of the Dyson and Bethe-Salpeter equations (upper box). This cycle is
repeated until convergence is reached. G0 is the non-interacting propagator
and Γ0 is the partially dressed pair propagator obtained by summing the
bare ladder diagrams.

for the zero-range continuous-space interaction, the zero-range
limit can also be taken analytically. This is in sharp contrast with
other numerical methods11–13, where taking the thermodynamic
and zero-range limits is computationally very expensive. BDMC
performs a random walk in the space of irreducible diagrams using
local updates. The simulation is run in a self-consistent cycle (along
the lines of ref. 2) until convergence is reached. Full details will
be presented elsewhere. In essence, our approach upgrades the
standard many-body theories based on one lowest-order diagram
(for example, refs 14,15) to millions of graphs.

In the quantum degenerate regime, we do not observe
convergence of the diagrammatic series for Σ and Π evaluated
up to order 9. Here, order N means Σ -diagrams with N vertices
(that is, N Γ -lines) and Π -diagrams with N − 1 vertices. To
extract the infinite-order result, we apply the following Abelian
resummation methods16. The contribution of all diagrams of order
N is multiplied by e−ελN−1 , where λn depends on the resummation
method: (1) λn=n logn (with λ0=0) for Lindelöf16, (2) λn= (n−1)
log(n−1) (with λ0= λ1= 0) for ‘shifted Lindelöf’, or (3) λn=n2 for
Gaussian17. A full simulation is performed for each ε, and the final
result is obtained by extrapolating to ε=0 (Fig. 2).

This protocol relies on the following crucial mathematical
assumptions: (1) the N th order contribution of the diagrammatic
expansion for Σ (for fixed external variables) is the N th coefficient
of the Taylor series at z = 0 of a function g (z) which has a non-zero
convergence radius, (2) the analytic continuation g (1), performed
by the above resummation methods16,17, is the physically correct
value ofΣ . The same assumptions should hold forΠ .

Proving these assumptions is an open mathematical challenge.
Note that Dyson’s collapse argument18 is not applicable to immedi-
ately disprove the assumption (1) of a non-zero convergence radius:
indeed, unlike QED, our skeleton series is not an expansion in
powers of a coupling constant whose sign change would lead to
an instability. The first important evidence for the validity of our
mathematical assumptions is that the three different resummation
methods yield consistent results. For an independent test, we
turn to experiments.

The present experiment furnishes high-precision data for the
density n as a function of the local value V of the trapping potential
(Fig. 3 and Methods). We start the process by obtaining the EOS at
high temperatures in the non-degenerate wings of the atom cloud,
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Figure 2 | Cross-validation between resummation procedure and
experiment at βµ = +1. Bold diagrammatic Monte Carlo data for the
dimensionless density nλ3, as a function of the parameter ε controlling the
resummation procedure, for three different resummation methods: Lindelöf
(blue circles), shifted Lindelöf (black diamonds), and Gauss (open green
squares). The solid lines are linear fits to the Monte Carlo data, their ε→0
extrapolation agrees within error bars with the experimental data point
(filled red square). (In the opposite limit ε→∞, the Lindelöf (resp. shifted
Lindelöf) curves will asymptote to the first15,21 (resp. third) order results,
shown by the dashed (resp. dash–dotted) line.) Error bars for each ε
represent the statistical error, together with the estimated systematic error
coming from not sampling diagrams of order>9.

where the virial expansion is applicable. Once the temperature
and the chemical potential have been determined from fits to the
wings of the cloud, the data closer to the cloud centre provides
a new prediction of the EOS. The process is iterated to access
lower temperatures.

Scale invariance allows one to write the density EOS as
n(µ,T )λ3= f (βµ), with λ=

√
2π h̄2/(mkBT ) the thermal de Broglie

wavelength, β= 1/(kBT ) the inverse temperature and f a universal
function. A convenient normalization of the data is provided
by the EOS of a non-interacting Fermi gas, n0λ3 = f0(βµ). In
Fig. 4a, we thus report the ratio n(µ,T )/n0(µ,T )= f (βµ)/f0(βµ),
bringing out the difference between the ideal and the strongly
interacting Fermi gas. The Gibbs–Duhem relation allows us to also
calculate the pressure at a given chemical potential, P(µ0,T ) =∫ µ0

−∞
dµ n(µ,T )= 1/(βλ3)F(βµ0), where F(x)=

∫ x
−∞

dx ′f (x ′). We
normalize it by the pressure of the ideal Fermi gas and show
F(βµ)/F0(βµ) (Fig. 4b). The agreement between BDMC and
experiment is excellent. The comparison is sufficiently sensitive to
validate the procedure of resumming and extrapolating (Fig. 2).
The result was checked to be independent of the maximal sampled
diagram order Nmax ∈ {7;8;9} within the error bars shown in
Fig. 2 for each ε. The BDMC final error bar in Fig. 4 is the
sum of the conservatively estimated systematic errors from the
uncertainty of the ε→ 0 extrapolation and from the dependence
on numerical grids and cutoffs, the latter being reduced by
analytically treating high-momentum short-time singular parts.
The systematic error in the experiment is determined to be
about 1% by the independent determination of the EOS of
the non-interacting Fermi gas. The experimental error bars of
Fig. 4 also include the statistical error, which is <0.5%, thanks
to the scale invariance of the balanced unitary gas: irrespective
of shot-to-shot fluctuations of atom number and temperature,
all experimental profiles contribute to the same scaled EOS-
function f . The dominant uncertainty on the experimental EOS
stems from the uncertainty in the position of the 6Li Feshbach
resonance, known to be at 834.15 ± 1.5G from spectroscopic
measurements19. The change in energy, pressure and density with
respect to the interaction strength is controlled by the so-called
contact20 that is obtained from Γ in the BDMC calculation.
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Figure 3 | Constructing the EOS from in situ imaging. The atom cloud shown contains N=8× 104 atoms for each spin state, with a local Fermi energy of
EF= 370 nK at the centre. a, Absorption image of the atomic cloud after quadrant averaging. b, Reconstructed local density n(ρ,z). c, Equipotential
averaging produces a low-noise density profile, n versus V. Thermometry is performed by fitting the experimental data (red) to the known portion of the
EOS (solid blue line), starting with the virial expansion for βµ<−1.25 (green dashed line). In this example, the EOS is known for βµ≤−0.25, and the fit to
the density profile yields T= 113 nK, and βµ= 1.63. d, Given µ and T, the density profile can be rescaled to produce the EOS nλ3 versus βµ.
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Figure 4 | Equation of state of the unitary Fermi gas in the normal phase. Density n (a) and pressure P (b) of a unitary Fermi gas, normalized by the
density n0 and the pressure P0 of a non-interacting Fermi gas, versus the ratio of chemical potential µ to temperature T. Blue filled squares: BDMC (this
work), red filled circles: experiment (this work). The BDMC error bars are estimated upper bounds on systematic errors. The error bars are one standard
deviation systematic plus statistical errors, with the additional uncertainty from the Feshbach resonance position shown by the upper and lower margins as
red solid lines. Black dashed line and red triangles: Theory and experiment (this work) for the ideal Fermi gas, used to assess the experimental systematic
error. Green solid line: third order virial expansion. Open squares: first order bold diagram15,21. Green open circles: Auxiliary Field QMC (ref. 11). Star:
superfluid transition point from Determinental Diagrammatic Monte Carlo13. Filled diamonds: experimental pressure EOS (ref. 22). Open pentagons:
pressure EOS (ref. 23).
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This allows us to define the uncertainty margins above and below
the experimental data (Fig. 4) that give the prediction for the unitary
EOS if the true Feshbach resonance lies 1.5 G below or above
834.15G, respectively.

Our results clearly differ from previous theoretical and ex-
perimental results. Deviations from the theory based on the
first-order Feynman diagrams15,21 are expected, and rather re-
markably moderate. Differences with lattice Monte Carlo data11,13
may seem more surprising, as in the particular case of the bal-
anced system these algorithms are free of the sign problem, al-
lowing one in principle to approach the balanced unitary gas
model in an unbiased way. However, eliminating systematic er-
rors from lattice-discretization and finite volume requires extrap-
olations which are either not done11 or difficult to control12,13.
The ENS experimental pressure EOS (ref. 22) lies systemati-
cally below ours, slightly outside the reported error bar. The
experimental results from Tokyo23 do not agree with the virial
expansion at high temperature. The BDMC results agree well
with the present experimental data all the way down to the
critical temperature for superfluidity (Fig. 4). On approaching
(βµ)c , we observe the growth of the correlation length in the
BDMC pair correlation function Γ . A protocol for extracting
the critical temperature itself from the BDMC simulation will
be presented elsewhere.

We are not aware of any system of strongly correlated fermions
in nature where experimental and unbiased theoretical results
were compared at the same level of accuracy. Even for bosons,
the only analogue is liquid 4He. This promotes the unitary gas
to the major testing ground for unbiased theoretical treatments.
The present BDMC implementation should remain applicable at
finite polarization and/or finite scattering length, opening the
way to rich physics which was already addressed by cold atoms
experiments6,24–27. We also plan to extend BDMC to superfluid
phases by introducing anomalous propagators. Moreover, as
the method is generic, we expect numerous other important
applications to long-standing problems acrossmany fields.

Note added in proof: After a preprint of this work became available,
new auxiliary-field quantum Monte Carlo data were presented28,
with undetermined systematic errors whose evaluation in future
work is called for by the authors of ref. 28.

Methods
The experimental set-up has been described previously24. In short, ultracold
fermionic 6Li is brought to degeneracy by sympathetic cooling with 23Na. A
two-state mixture of the two lowest hyperfine states of 6Li is further cooled in a
hybrid magnetic and optical trap at the broad Feshbach resonance at 834G. We
employ high-resolution in situ absorption imaging to obtain the column density of
the gas, that is converted into the full 3D density using the inverse Abel transform29.
Equidensity lines provide equipotential lines that are precisely calibrated using
the known axial, harmonic potential (axial frequency νz = 22.83±0.05Hz).
Equipotential averaging yields low-noise profiles of density n versus potential V .
Density is absolutely calibrated by imaging a highly degenerate, highly imbalanced
Fermi mixture, and fitting the majority density profile to the ideal Fermi gas EOS
(ref. 24). In contrast to previous studies22,23, our analysis does not rely on the
assumption of harmonic trapping.

Thermometry is performed by fitting the density profile to the EOS
constructed thus far, restricting the fit to the portion of the density profile
where the EOS is valid. In the high-temperature regime, the EOS is given by
the virial expansion

nλ3= eβµ+2b2e2βµ+3b3e3βµ+··· (1)

where the virial coefficients are b2 = 3
√
2/8 (ref. 30), and b3 =−0.29095295

(ref. 31). Fitting a high-temperature cloud to the virial expansion gives the
temperature T and the chemical potentialµ of the cloud, and the EOS nλ3= f (βµ)
can be constructed. We have used equation (1) for βµ< (βµ)max =−1.25 and we
checked that our EOS did not change within statistical noise if we instead used
(βµ)max=−0.85. Once a new patch of EOS has been produced, it can then in turn
be used to fit colder clouds. Iteration of this method allows us to construct the EOS
to arbitrarily low temperature. A total of ∼1,000 profiles were used, with 10–100
profiles (50 on average) contributing at any given βµ.
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