
LETTERS
PUBLISHED ONLINE: 26 FEBRUARY 2012 | DOI: 10.1038/NPHYS2245

Spin-nematic squeezed vacuum in a quantum gas
C. D. Hamley, C. S. Gerving, T. M. Hoang, E. M. Bookjans and M. S. Chapman*
The standard quantum limit of measurement uncertainty
can be surpassed using squeezed states, which minimize
the uncertainty product in Heisenberg’s relation by reducing
the uncertainty of one property at the expense of another1.
Collisions in ultracold atomic gases have been used to
induce quadrature spin squeezing in two-component Bose
condensates2,3, for which the complementary properties are
the components of the total spin vector. Here, we generalize
this finding to a higher-dimensional spin space by measuring
squeezing in a spin-1 Bose condensate. Following a quench
through a quantum phase transition, we demonstrate that
spin-nematic quadrature squeezing improves on the standard
quantum limit by up to 8–10 dB—a significant increase on
previous measurements. This squeezing is associated with
negligible occupation of the squeezed modes, and is analogous
to optical two-mode vacuum squeezing. The observation has
implications for continuous variable quantum information and
quantum-enhanced magnetometry.

The study of many-body quantum entangled states including
atomic spin squeezed states is an active research frontier. In
addition to being intrinsically fascinating, such states have
applications in precisionmeasurements, quantum information and
fundamental tests of quantum mechanics4. Squeezed states were
first demonstrated in optical fields5 and later with ensembles of
pseudo-spin-1/2 atoms using nonlinear atom–light interactions6.
For spin-1/2 particles, coherent states of the system are uniquely
specified by the components of the total spin vector 〈S〉, typically
illustrated on an SU(2) Bloch sphere. For particles with higher spin,
further degrees of freedom beyond the spin vector are required to
fully specify the state. For spin-1 particles, a natural basis to describe
the wavefunction is the SU(3) Cartesian dipole–quadrupole basis,
consisting of the three components of the spin vector, Ŝi, and
the moments of the rank-2 quadrupole or nematic tensor, Q̂ij
({i, j} ∈ {x,y,z}). In matrix form, the nematic moments can be
writtenQij=SiSj+SjSi−(4/3)δij , where δij is theKronecker delta.

Spin-1 atomic Bose–Einstein condensates7–11 provide an excep-
tionally clean experimental platform to investigate the quantum
dynamics of many-body spin systems and have been realized using
the f = 1 hyperfine manifold of 87Rb and 23Na. They feature con-
trollable quantum phase transitions, well-understood underlying
microscopic models and flexible defect-free geometries. Impor-
tantly, it is possible to initialize non-equilibrium or excited states of
the system and to directly measure both the spin vector and the ne-
matic tensor using standard atomic-state manipulation tools. It was
demonstrated in ref. 12 that the spinor interaction can be written as
total spin angular momentum, λŜ2, where Ŝ2 = Ŝ2x + Ŝ2y + Ŝ2z . It is
natural to describe this many-body system in the second quantized
formalism in terms of the mode operators of three Zeeman states
(for example Ŝx = (1/

√
2)(â†

1â0 + â†
0â−1 + â†

0â1 + â†
−1â0)). Here

ai are particle annihilation operators for the magnetic sublevels
mf=−1,0,1, and we use the single-mode approximation where the
modes share the same spatial wavefunction φ(r) determined by the
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spin-independent part of theHamiltonian. The spinorHamiltonian
describing the collisionally induced spin dynamics of the conden-
sate and the effects of an applied magnetic field B (by convention
along the z axis) can bewritten (Supplementary Information)

H= λŜ2+
1
2
qQ̂zz (1)

Here λ and q∝B2 characterize the inter-spin and Zeeman energies,
respectively, and Q̂zz = (2/3)â†

1â1 − (4/3)â†
0â0 + (2/3)â†

−1â−1. At
high fields, the system favours nematic ordering of the spins,
an eigenstate of Q̂zz . This is a state with 〈S〉 = 0 with broken
rotational symmetry given by the anisotropy of spin fluctuations,
for example 〈S2x〉 = 〈S

2
y〉 6= 〈S

2
z 〉, and whose alignment is specified

by a time-reversal invariant ‘director’, in this case the z axis. In the
Fock basis, |N1,N0,N−1〉, this is just the state with allN atoms in the
mf=0 state: |0,N ,0〉. At low fields, the sign of λ determines whether
the interactions favour a ferromagnetic (λ< 0, that is 87Rb used in
our work) or anti-ferromagnetic (λ> 0, that is 23Na) ground state,
with the ground states being maximum and minimum total spin
respectively. At intermediate fields, the system undergoes a quan-
tum phase transition between orders with a quantum critical point
at q=2|c| for the ferromagnetic case, where c=2Nλ (ref. 13).

In spin-1/2 systems, nonlinear Hamiltonians such as S2z produce
squeezing of the spin variables satisfying Heisenberg uncertainty
relations, for example 1Sx1Sy ≥ (1/2)|〈Sz 〉|. Although criteria for
squeezing and entanglement are now well established for spin-1/2
particles within an SU(2) framework, there was considerable early
discussion about different squeezing definitions14,15. There has been
much less work for higher-spin particles with correspondingly
higher symmetries. Squeezing in spin-1 systems has been studied
from the perspective of two-mode squeezing16–19, in terms of the
Gell-Mann (quark) framework of the SU(3) algebra20 and in terms
of spin-nematic measurables21. Very recently, general criteria for
spin squeezing for arbitrary spin particles have been developed22.

The source of squeezing in a spin-1 condensate is the nonlinear
collisional spin interaction Hs= λŜ2, which reduces to Ŝ2→ Ŝ2x+ Ŝ

2
y

for states with 〈Ŝz 〉 = 0 of interest here. This Hamiltonian contains
four-wave mixing terms, HFWM = 2λ(â† 2

0 â1â−1 + â†
1â

†
−1â

2
0), which

generate squeezing that can be described using a two-mode formal-
ism where the â±1 modes are the signal and idler (Supplementary
Information). Here we prefer an analysis using the commutators
of the SU(3) group describing the spin-1 system, as it provides
more insight. Experimental investigations of spin-1 condensates
have been predominantly in the mean-field limit; however, first
explorations beyond themean field have been reported23–26.

From the generalized uncertainty relation 1A1B ≥ (1/2)
|〈[Â,B̂]〉|, only operator pairs with non-zero expectation values for
their commutation relations can exhibit squeezing. For condensates
with the atoms in themf= 0 state, only two of the SU(3) commuta-
tors have non-zero expectation values: 〈0,N ,0|[Ŝx ,Q̂yz ]|0,N ,0〉 =
−2iN and 〈0,N ,0|[Ŝy ,Q̂xz ]|0,N ,0〉 = 2iN , leading to the relevant
uncertainty relations 1Sx1Qyz ≥N and 1Sy1Qxz ≥N . For each
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Figure 1 | Illustration of the experimental sequence using semi-classical simulation and quasi-probability distributions. a, The initial state is a
condensate with the atoms prepared in the mf=0 state. An N= 30-atom distribution is used to emphasize features. b, After 25 ms of evolution,
spin-nematic squeezing develops along the separatrix (green line) in the upper two spheres. c, A microwave pulse rotates the quadrature phase. For
comparison the state from the previous plot is shown in red in the upper two spheres. d, A π/2 radiofrequency pulse rotates the transverse magnetization
Sx into Sz. For comparison the state from the previous plot is shown in red in the lower two spheres. e, After the trap is turned off, a Stern–Gerlach field is
applied during the time-of-flight expansion and the clouds of atoms are counted using fluorescence imaging. Measurements of 〈Sz〉=N1−N−1 are shown
for 100 runs of a squeezed quadrature (green) and an unsqueezed quadrature (orange).

of these, the uncertainty relationship is between a spin operator
and a quadrupole nematic operator; these operators and their com-
mutators define two subspaces. From these relations, two squeezing
parameters are defined in terms of quadratures of the operators:

ξ 2x(y)=〈(1(cos θSx(y)+ sin θQyz(xz)))2〉/N

with θ as the quadrature angle18,21. Squeezing within a given SU(2)
subspace is indicated by the variance of the quadrature operator be-
ing less than the standard quantum limit ofN for some value of θ .

The experimental sequence is illustrated in Fig. 1 with the
help of the spin SU(2) subspace {Sx ,Sy ,Sz} and both of the
subspaces that exhibit squeezing, {Sx ,Qyz ,Qzz} and {Sy ,Qxz ,Qzz}

(Supplementary Information). The initial state of the condensate
is shown in Fig. 1a. It has no spin moment, 〈S〉 = 0, but non-zero
diagonal quadrupole elements 〈Qii〉 6= 0, and uncorrelated equal
uncertainties in Sx ,Sy ,Qxz ,Qyz . Subsequent evolution is governed by
equation (1) in the regime q≤ 2|c|. Out-of-equilibrium dynamics
of spin-1 condensates generally exhibit oscillatory behaviour in the
spin components27,28, except near a separatrix (green contour) in
phase space where the period diverges29. For our case, the initial
state lies on the separatrix, and hence evolution is wholly dictated
by quantum fluctuations corresponding to the initial uncertainties.
These uncertainties evolve exponentially, generating anti-squeezing
for a quadrature of {Sx ,Qyz} aligned along a branch of the separatrix
and squeezing for the orthogonal quadrature, as shown in Fig 1b.
Measuring the squeezing requires state tomography involving two
SU(3) rotations. The first is a rotation about Qzz that rotates
the quadrature squeezing to align to Sx . Conceptually, Qzz is the
generator of the rotation in the squeezed subspaces and the rotation
of the quadrature angle is given by the operator exp(i1θQzz).
The second is a π/2 rotation about the Sy axis (in the laboratory
frame) that rotates the fluctuations in Sx into the measurement
basis, Sz =N1−N−1 (Fig. 1d). These manipulations are equivalent
to the homodyne technique used in quantum optics to measure
two-mode squeezing where the â0 mode is the local oscillator
(Supplementary Information).

Identical squeezing also occurs in the degenerate {Sy ,Qxz ,Qzz}

subspace, which leads to an important, but subtle, point. In the
laboratory frame, the system does not confine itself to either of
the SU(2) subspaces but rather undergoes rapid Larmor precession
described by rotations about Sz in two other SU(2) subspaces,
{Sx ,Sy ,Sz} and {Qyz ,Qxz ,Sz} (not shown). However, because the
squeezing is identical in both subspaces, and the Larmor precession
of the spin vector and quadrupole are synchronized, it is not
necessary to track the precession to measure squeezing. This has
important experimental consequences in that it is not necessary to
maintain synchronization with the Larmor rotation to carry out
quantum state tomography.

For the experiment, we prepare a condensate ofN =45,000, 87Rb
atoms in the |f = 1,mf= 0〉 hyperfine state in a high magnetic field
(2G). The condensate is tightly confined in an optical dipole trap
with trap frequencies of 250Hz. For these parameters, the Thomas–
Fermi radii of the condensate are 3.8 µmand the spin healing length
is 11 µm, indicating that the condensate is well described by the
single-mode approximation. To initiate evolution, the condensate
is quenched below the quantum critical point by lowering the
magnetic field to a value of 210mGand then allowed to freely evolve
for a set time. During this evolution the squeezing is developed.
Note that during this time there is essentially no population transfer
(<1%) from themf=0 state (Fig. 2c top), hence this corresponds to
squeezed vacuum of themf=±1modes. The quadrature rotation is
accomplished by shifting the phase of themf= 0 amplitude using a
microwave detuned from the clock transition. This is immediately
followed by an RF rotation to rotate Sx into Sz . The trap is then
turned off and a Stern–Gerlach field is applied to separate the mf
components during a 22ms time-of-flight expansion. The atoms
are probed for 400 µs with three pairs of orthogonal laser beams,
and the resulting fluorescence signal is collected by a CCD (charge-
coupled device) camera. Sample Sz measurements are shown in
Fig. 1e for two different quadrature angles and show qualitatively
both enhanced and suppressed fluctuations.

The experiment cycle is repeated 100 times for each quadrature
angle to collect sufficient statistics to determine the fluctuations ξ 2x .
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Figure 2 | Comparison of measured quadrature fluctuations with a fully quantum calculation. a, Measurement of the quadrature variances for different
evolution times and quadrature phase shifts. The phase shift is calculated from the microwave detuning normalized to the on-resonance Rabi rate
(Supplementary Information). b, Detailed view of the maximum squeezing for different evolution times. The phase of data is shifted to match the
simulation. c, Time evolution of the populations and the maximum and minimum quadrature variances. The squeezing measurement is made before
significant population evolution. Estimated errors are approximately the size of the markers for both phase and variance. Open markers are statistics of the
raw data; filled markers have been corrected for PSN, but the difference is negligible for all but the most squeezed data points.
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Figure 3 | Reconstructions of the phase space for different evolution times. a, 15 ms, b, 30 ms, c, 45 ms and d, 65 ms. The last two are at half the scale of
the first. The black trace in each is the calculated 1/

√
e uncertainty ellipse from the simulation.

Themeasurement results are shown in Fig. 2 for different evolution
times. The fluctuations clearly exhibit noise reduced below the
standard quantum limit (ξ 2x < 0 dB) for certain quadrature phases
and show increased noise π/2 radians away. The measurements
are compared to a fully quantum theoretical calculation (Sup-
plementary Information) carried out by numerically integrating
equation (1) with a spinor dynamical rate c/h = −8Hz (h is
Planck’s constant) and q(t ) determined experimentally using mi-
crowave spectroscopy. The spinor dynamical rate is chosen to
match the degree of anti-squeezing observed and is also a good fit
to the long-time evolution of the populations (Fig. 2c top) as well
as estimates from the trap frequencies andN .

As evolution time is increased, the maximum variance shows
anti-squeezing that increases in good agreementwith the simulation
(Fig. 2c. black lines) and is approximately exponential with a
time constant of (2|c|/h̄)−1 given by the two-mode squeezing
model (Fig. 2c, red lines). The minimum variance shows squeezing
that limits asymptotically after ∼30ms of evolution owing to
detection noise from a combination of light scattered by the
apparatus and the photoelectron shot noise (PSN). The PSN
limit is indicated by the grey lines in Fig. 2. The maximum

observed squeezing is −8.3+0.6
−0.7 dB, which is the highest degree

of quadrature squeezing observed in any atomic system. When
corrected for the PSN, it is possible to infer a ‘corrected’ squeezing
parameter of −10.3+0.7

−0.9 dB that would be obtained with detection
improvements. The phase of maximum squeezing also evolves
in time, converging to the phase of the separatrix given by
cos 2θ =−q/c−1 with a small (∼150mrad) discrepancy between
the measured phase of maximum squeezing and the theoretical
prediction. After this initial time of approximately exponential
squeezing, the minimum squeezing parameter reaches a turning
point due to pump depletion.

We also reconstruct the phase space distribution of the
squeezing for each time (Fig. 3) using an inverse Radon transform
(Supplementary Information). The theoretical squeezing ellipse is
shown for comparison. Just as the theoretical prediction shows,
the quadrature evolves in both aspect ratio and phase rotation;
however, quantitative agreement is limited by the finite number
of data sets. Furthermore, the minimum width of parts c and d
is limited by the PSN.

Very recently, two papers related to ours have appeared30,31.
These experiments share a similar spin mixing mechanism to
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generate quantum correlations, though in their case it is in the
f = 2 hyperfine manifold. For both of these other experiments, the
starting point is the observation of strong non-classical fluctuations
of Sz =N1−N−1 due to spin mixing, which we previously reported
in ref. 26. In ref. 31, atomic homodyne detection of the quadrature
fluctuations using a technique that is very similar to ours was
demonstrated. In their case, they were not able to show that the
fluctuations were smaller than the classical limit, only that the
fluctuations were dependent on the local oscillator phase. Only
by subtracting detection noise do they claim entanglement of the
two modes at the 4 ± 17 atom level. In ref. 30, the number-
squeezedmf=±1 states are coupled using a sequence ofmicrowave
transitions to realize a two-level pseudo-spin-1/2 system. On
the corresponding Bloch sphere, the number-squeezed states are
completely phase uncorrelated. Bymeasuring the resulting variance
and fourth moment of Sz , they were able to show that the angle
could be determined with an uncertainty −1.6 dB below the
classical limit. These other experiments are in the regime of twin-
atom states where themf=±1 states aremacroscopically populated,
whereas in our casewe are in the limit of negligible population of the
two states corresponding to squeezing of the atomic vacuummodes.
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