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Hanbury Brown and Twiss correlations across the
Bose–Einstein condensation threshold
A. Perrin1,2,3, R. Bücker1, S. Manz1, T. Betz1, C. Koller1, T. Plisson1,4, T. Schumm1

and J. Schmiedmayer1*
Hanbury Brown and Twiss correlations—correlations in far-
field intensity fluctuations—yield fundamental information on
the quantum statistics of light sources, as demonstrated
after the discovery of photon bunching1–3. Drawing on the
analogy between photons and atoms, similar measurements
have been performed for matter-wave sources, probing density
fluctuations of expanding ultracold Bose gases4–8. Here we
use two-point density correlations to study how coherence
is gradually established when crossing the Bose–Einstein
condensation threshold. Our experiments reveal a persistent
multimode character of the emerging matter-wave as seen in
the non-trivial spatial shape of the correlation functions for all
probed source geometries, from nearly isotropic to quasi-one-
dimensional, and for all probed temperatures. The qualitative
features of our observations are captured by ideal Bose gas
theory9, whereas the quantitative differences illustrate the role
of particle interactions.

Hanbury Brown and Twiss correlations can be related to a
quantum interference effect reflecting the multimode nature of the
source2. In analogy to thermal light sources, atom bunching in
expanding thermal Bose gases has been observed4–8. Well above the
condensation threshold, thermal Bose gases are sufficiently dilute
such that atom–atom interactions are negligible and ideal gas theory
provides an accurate description.

Extending the atom–photon analogy into the quantum degen-
erate regime, the absence of bunching has been observed in an
out-coupled atom-laser10,11 and in an expanding Bose–Einstein
(BE) condensate6,8. This suggested a perfect coherence of these
systems, similar to a monomode optical laser where interferences
leading to Hanbury Brown and Twiss correlations are essen-
tially absent, yielding only spatially and temporally uncorrelated
Poissonian shot noise12.

However, studies of first-order coherence properties of Bose
gases near the BE condensation phase transition have revealed the
importance of thermal excitations, reducing the coherence also
below threshold13,14. Moreover, atom–atom interactions have been
identified as a cause for a multimode nature in very elongated
degenerate Bose gases. Originally predicted for the limit of weakly
interacting degenerate 1D systems15, similar behaviour is also
present for very elongated 3D degenerate Bose gases16,17. This effect
has been demonstrated experimentally through measurements of
density fluctuations18 or two-point correlations19 for temperatures
significantly below the BE condensation threshold.

In the following, we probe the second-order correlation function
g2 of expanding Bose gases across the BE condensation phase
transition, at zero and finite distances, to map out the gradual
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Figure 1 | Fluorescence imaging of density correlations. a, Schematic of
the experimental geometry. b, Example of the density distribution (lateral
cut, log scale) of a Bose gas slightly below the Bose–Einstein condensation
threshold after 46 ms expansion time. c, Profile of b, integrated along y. The
red line indicates a fit to the density distribution of the thermal fraction,
yielding the temperature T.

establishment of matter-wave coherence. Varying the source
geometry, we explore the regime from ‘3D’ to ‘quasi-1D’ physics.
Close to the BE condensation threshold, the fluctuations of themost
populated quantummodes are significant and common theoretical
models describing interacting Bose gases, as in refs 15–17, fail.
We therefore restrict our analysis to a qualitative comparison
to ideal Bose gas theory predictions, allowing us to cover all
investigated regimes.

The function g2(r,r′) measures the probability of joint detection
of two particles at positions r and r′ and hence relates to the density
fluctuations of the system and their spatial correlations. For an
ideal Bose gas above the BE condensation threshold, g2(0) = 2,
highlighting an excess of density fluctuations (bunching). For
finite distances, g2(r,r′) decays to unity on the length scale of the
temperature-dependent coherence length. For a true monomode
source, g2(r,r′)=1, demonstrating perfect coherence. In general the
shape of g2(r,r′) reflects the interplay between the occupied modes
of the system through the spatial scales of density fluctuations.
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Figure 2 |Density correlation results. a–c, Density correlation functions of expanding Bose gases n2 (lateral cut in (1x,1y) plane) at 0.99 T?c , 0.95 T?c , and
0.85 T?c , respectively. The aspect ratio λ of the atomic source is 13.5. d–f, Circles: radial cuts of a–c. Dashed line: radial cuts of the corresponding
autocorrelation of the mean density profile. Solid line: radial cuts of predictions of ideal Bose gas theory for the second-order correlation function
g2(0,1y). g–i, Circles: radially averaged axial cuts of a–c over 160 µm where the shot noise peak s is excluded. The width of the exclusion region is 32 µm.
Dashed line: radially averaged axial cuts of the corresponding autocorrelation of the mean density profile. Solid line: radially averaged axial cuts of the
predictions of ideal Bose gas theory for the second-order correlation function g2(1x).

To obtain the second-order correlation function of a Bose gas
after its release from the trap, we use our novel fluorescence
imaging20. Its high spatial resolution, single-atom sensitivity and
exquisite signal-to-noise ratio enables us to probe the g2 function
with an accuracy at the per cent level. We record a thin slice
of the atomic density in the horizontal x–y plane at the central
part of the gas after 46ms expansion (Fig. 1a,b). The thickness
of the slice is set to 225 µm by adjusting the duration of the
excitation pulse to 500 µs.

Our matter-wave source is a 87Rb gas of adjustable temperature
prepared in the |F ,mF 〉 = |1,−1〉 state in an atom chip magnetic
trap21. The chip design allows us to control the parameters of the
magnetic trap and hence the shape of the source over a large range
of aspect ratios λ=ωy,z/ωx from 4 to 120, whereωx andωy,z are the
axial and radial trap frequencies respectively22.

Modifying the aspect ratio of the trap we explore different
regimes of Bose gases (Supplementary Information). For the most
isotropic traps (λ = 4.75,13.5), gases significantly below the BE
condensation threshold can be considered in the Thomas–Fermi
regime with a chemical potential µ of the order of 3 to 4 h̄ωy,z . In
this case the expansion starts with a hydrodynamic phase. For the
most elongated trap (λ= 113), gases with temperatures below the
degeneracy threshold have µ slightly smaller than h̄ωy,z , entering
the weakly interacting quasi-1D regime23. In this case the expansion
of the system is essentially collisionless17.

We obtain the temperature of the system T and deduce the
number of atoms in the thermal fraction of the gas Nth by fitting
the thermal tails of the axial (x axis) density profiles using an
analytical formula based on ideal Bose gas theory (Fig. 1c). By
comparing the fit result to the total observed signal, this also yields
the number of condensed atoms (if present) within the measured
slice. A simple model for the expansion of the degenerate fraction
of the gas yields NBEC, the total number of condensed atoms.
Finally, for each set of temperature T and total atom number
N =Nth+NBEC, we estimate the critical temperature of the system
T ?
c through the relation T ?

c = α
1/3Tc , where Tc(N ) corresponds to

ideal Bose gas theory predictions for the critical temperature. The
experimentally obtained factor α depends exclusively on the source
aspect ratio λ (see Methods).

Averaging over typically one hundred experimental repetitions
with identical experimental parameters, we calculate the mean
autocorrelation of the density slices and normalize it by the
autocorrelation of themean density slice.We obtain the normalized
density correlation function n2, which can be decomposed into
the sum of two terms, s and g2. The term g2 contains the
desired information about two-particle correlations whereas s is a
contribution due to atomic shot noise (seeMethods).

Typical results of density correlation functions of expanding
Bose gases from a moderately anisotropic source (λ = 13.5) are
shown in Fig. 2. The corresponding graphs for a nearly isotropic
trap (λ = 4.75) and a quasi-1D gas (λ = 113) can be found in
the Supplementary Information Figs S1 and S2). The atomic shot
noise s appears as a dark oval spot at the centre. Its eigen-axes are
rotated by 45◦ with respect to the axes of the atomic source x,y ,
corresponding to the direction of the imaging laser beams. The
structure corresponding to g2 is visible behind this central spot. Its
anisotropy reflects the aspect ratio of the source gas.

For a thermal gas above the BE condensation threshold
(T >T ?

c ) we observe bunching. In this region, where inter-particle
interactions are weak, we find an almost perfect agreement
between the experimental observations and the second-order
correlation function g2 simulated within ideal Bose gas theory.
As input parameters we take the thermodynamical properties
obtained from the data used to compute n2 and account for the
imaging resolution9.

Below the critical temperature (T <T ?
c ) the main experimental

observations valid for all explored aspect ratios (Fig. 2 and
Supplementary Figs S1 and S2) are:

(1) The establishment of coherence along the radial direction.
The RMS width of the g2 peak along the y axis grows rapidly
when crossing the critical temperature T ?

c until it saturates owing
to the finite radial size of the system (Fig. 2d–f). This can be
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Figure 3 |Density correlation comparison. a–c, Peak height of the second-order correlation function of expanding Bose gases for various ratios T/T?c and
three different trap aspect ratios λ=4.75 (light blue), 13.5 (orange) and 113 (green). It is defined as n2(0) (see the caption of Fig. 2). The solid lines
indicate the predictions obtained from ideal Bose gas theory. The light grey areas represent the range where the source is fully thermal. Note that the total
atom number N is not held constant between the data points, however this is taken into account in the value of T?c . d–f, Circles: radially averaged axial cuts
of the density correlation function n2 (see Fig. 2 caption) with parameters corresponding to the coloured square labelled respectively in a–c. Dashed line:
radially averaged axial cuts of the corresponding autocorrelation of the mean density profile. Solid line: radially averaged axial cuts of the predictions of
ideal Bose gas theory for the second-order correlation function g2(1x).

seen as an experimental observation of the establishment of radial
coherence14, where the shape of n2 changes from a decreasing
exponential (Fig. 2d–e) to a profile set by the spatial shape of the
condensed cloud after expansion (Fig. 2f). The RMS width of the g2
peak is related to the radial coherence length in the trapped system
through the hydrodynamic expansion of the gas, which imposes a
scaling factor on the radial size of the cloud (seeMethods).

(2) g2(0) > 1 and the appearance of a dip below unity at
finite distances along the axial g2. Owing to the anisotropy
of the trap, thermal excitations of the system will typically be
spread over more modes axially (x axis) than radially. Below,
but close to the BE condensation threshold, few of the lowest
lying axial modes will be macroscopically occupied and the shape
of the second-order correlation function g2(1x > 0) can then
be interpreted as a result of the interference of all contributing
modes. Hence the time-of-flight expansion implements a very
sensitive heterodyne detection of weakly occupied modes of the
matter-wave source. The dip below unity at finite distance1x along
the g2 axial profiles is a direct consequence of this interference
(Fig. 2h,i). This observation is similar to observations reported
in recent experiments and theoretical work on weakly interacting
quasi-1D Bose gases17,19 (for a comparison see Fig. 3d–f). Most
interestingly we find this behaviour—generally associated with
quasi-1D physics—also for the most isotropic trap probed
(aspect ratio λ= 4.75).

We would like to point out that (2) corrects the widely
established image of a perfectly ‘flat’ correlation function for a
Bose gas immediately below the BE condensation threshold6,8,10,11.
Such behaviour highlights the influence of the non-ground-state
modes (thermal depletion) of the system, whose population
saturates below the BE condensation threshold. Working with
small atom numbers and our highly sensitive detector allow us to
accurately probe the transition regime and the graduate saturation
of excitations when crossing the BE condensation threshold.

To give an overviewwe show the behaviour of n2(0), set by g2(0),
for all three measured aspect ratios and temperatures in a wide
range of different ratios T/T ?

c in Fig. 3a–c. Most strikingly we find
g2(0)> 1 for all temperatures and aspect ratios, which indicates a
persistent multimode nature even for a 3D BE condensate far below
the condensation threshold. Lowering the temperature we observe

a slow decrease of the amplitude of Hanbury Brown and Twiss
correlations, which illustrates the gradual reduction of the thermal
depletion of the system.

Ideal Bose gas theory reproduces the basic physics and the
qualitative features of the experimental observation for moderate
aspect ratios as discussed above also below the critical temperature.
We attribute the remaining quantitative deviations between this
description and our observations to particle interactions (Fig. 3d–f
and Supplementary Figs S1 and S2).

For highly anisotropic sources with a large aspect ratio (λ= 113)
close to a quasi-1D system (µ < h̄ω), we observe no reduction
of g2(0) with temperature (Fig. 3c and Supplementary Fig. S2).
This behaviour is expected for very elongated systems, where
low lying axial excitations of the system remain macroscopically
occupied also significantly below the degeneracy temperature15–17,19.
It is based on the dominant influence of particle interactions,
hence ideal Bose gas theory fails to describe even the qualitative
behaviour at T < T ?

c .
Our experimental findings call for a more complete theoretical

description of interacting Bose gases at the threshold to Bose–
Einstein condensation, where fluctuations of competing modes are
significant. With such a theory at hand, measurements of density
correlations will allow a detailed quantitative characterization
of the mode occupation of the source. For equilibrium systems
well below the BE condensation threshold this can be used for
precision thermometry, wheremethods based on the observation of
a thermal background fail (as demonstrated for deeply degenerate
1D systems17,19). For ultralow temperatures well below the chemical
potential this would allow one to probe quantum fluctuations,
for example quantum depletion, of 3D or 1D Bose gases. Our
studies can directly be extended to non-equilibrium systems,
where fundamental questions on equilibration, thermalization and
integrability arise24–26.

Methods
Experimental set-up. We prepare ultracold gases of a few 104 87Rb atoms in the
|F ,mF 〉 = |1,−1〉 state confined in one out of three different Ioffe–Pritchard type
magnetic traps obtained using amultilayer atom chip22. The parameters of the three
harmonic traps are respectively ωx = 2π×20Hz axially and ωy,z = 2π×2 260Hz
radially (λ= 113), ωx = 2π×160Hz axially and ωy,z = 2π×2 180Hz radially
(λ=13.5) andωx=2π×320Hz axially andωy,z =2π×1 520Hz (λ=4.75) radially.
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We use forced radio-frequency (RF) evaporation to cool the gas close to
or below the Bose–Einstein condensation threshold. As a direct consequence,
colder gases contain less atoms and their corresponding critical temperature
T ?
c = α

1/3Tc decreases as well. Here Tc = h̄ωk−1B (N/ζ (3))1/3, where N is the
total number of atoms, ω=

(
ωxωyωz

)1/3, h̄ and kB are Planck and Bolzmann
constants respectively and ζ (x) is the Riemann zeta function. To ensure thermal
equilibrium of the gas we keep a constant RF knife for 200ms at the end of the
evaporative cooling ramp.

Comparison with ideal Bose gas theory. The constant α introduced in the
main text is adjusted such that cooling the gas to T ?

c = α
1/3Tc coincides with the

experimental observation of the appearance of a degenerate fraction of atoms
(NBEC≥ 0). The value of α is slightly smaller than unity for the moderate trap aspect
ratios (λ= 4.75,13.5), which qualitatively agrees with theoretical studies of the shift
of the critical temperature of interacting Bose gases27. For the most elongated trap
(λ= 113), α is of the order of three, which qualitatively agrees with predictions for
the degeneracy temperature for 1D systems28.

Fit of the axial profile of the thermal fraction. Using an analytic expression for
the density flux I of a freely expanding ideal Bose gas9 and assuming an elliptical
Gaussian shape for the excitation beams, hence neglecting any saturation effect,
we deduce a formula describing the axial profile of density ‘slices’ of the thermal
fraction of expanding Bose gases

ρls(x)=
1

2πw

∫ 1t

−1t
dt
∫

dydz exp
[
−

z2

2w2

]
I (x,y,z−z0;t0+ t )

that we can use to fit our experimental results. Here t0 is the expansion time, z0
the position of the centre of the excitation laser beam profiles, 21t the exposure
time and w the RMS width of the excitation beams. For the data presented in
this work t0 = 46ms, 21t = 500 µs and w = 10 µm (ref. 20). This model depends
on two parameters, the temperature of the gas T and its fugacity, which fixes
the total number of atoms in the thermal fraction of the gas Nth. To avoid the
divergence of the population of the ground state of the system when the fugacity
reaches its maximum, only the excited states of the ideal Bose gas are considered
for the calculation of ρls(x).

Estimation of NBEC. For traps with moderate aspect ratios (λ= 4.75,13.5),
the condition µ� h̄ωx,y,z is fulfilled quickly after passing the BE condensation
threshold (Supplementary Fig. S3) and the condensed part of the system can then
be assumed to be in the Thomas–Fermi regime. Scaling laws can then be used to
describe the gas expansion29,30. We find scaling factors of 6 (axial) and 625 (radial)
for λ= 13.5 and 28 (axial) and 430 (radial) for λ= 4.75 respectively. With such
a model, deducing the number of condensed atoms NBEC from the number of
condensed atoms counted in a density slice is straightforward.

For themost anisotropic trap (λ=113), we use an isotropic Gaussian ansatz for
the radial density distribution of the degenerate fraction of the gas. Fitting the RMS
width of theGaussian along the y axis, it is then straightforward to inferNBEC.

Density correlation function. The density correlation function is the sum of the
two contributions g2 and s. The first term g2 can be expressed as g2= g2 ∗o2, where
g2 (1r) is an average of the second-order correlation function g2(r,r′) over the
spatially inhomogeneous density profile of the gas with1r= r−r′ kept fixed, o2 is
the effective two-particle point spread function of the fluorescence imaging and
∗ is the convolution product. The function o2 accounts for the diffusion of single
atoms during the imaging process and optical aberrations, which blur the position
of single atoms in the images20. The other contribution to the density correlation
function s is due to the atomic shot noise and is proportional to the inverse of the
mean density of the gas.

Here we slightly extend the analytic expression of the second-order correlation
function of an expanding ideal Bose gas derived in ref. 9 to take into account
the imaging scheme. Using a 2D isotropic Gaussian model for o2, we obtain an
analytic expression for g2.
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