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Approaching zero-temperature metallic states
in mesoscopic superconductor–normal–
superconductor arrays
Serena Eley1, Sarang Gopalakrishnan1, Paul M. Goldbart2 and Nadya Mason1*

Systems of superconducting islands placed on normal metal
films offer tunable realizations of two-dimensional (2D)
superconductivity1,2; they can thus elucidate open questions
regarding the nature of 2D superconductors and competing
states. In particular, island systems have been predicted to
exhibit zero-temperature metallic states3–5. Although evidence
exists for such metallic states in some 2D systems6,7, their
character is not well understood: the conventional theory of
metals cannot explain them8, and their properties are dif-
ficult to tune7,9. Here, we characterize the superconducting
transitions in mesoscopic island-array systems as a function
of island thickness and spacing. We observe two transitions
in the progression to superconductivity. Both transition tem-
peratures exhibit unexpectedly strong depression for widely
spaced islands, consistent with the system approaching zero-
temperature (T=0) metallic states. In particular, the first tran-
sition temperature seems to linearly approach T = 0 for finite
island spacing. The nature of the transitions is explained using
a phenomenological model involving the stabilization of super-
conductivity on each island via a coupling to its neighbours.

Conventional zero-temperature (T = 0) metallic states do not
exist in 2D systems possessing any disorder, because of Anderson
localization8,9. To reconcile this fact with experimental evidence for
T = 0 metals in 2D, it has been proposed that the experimental
observations do not pertain to conventional metals, but rather
to spatially inhomogeneous superconducting (or, more generally,
correlated) states3,4,10. Inhomogeneity is thought to arise in some
of these systems because of phase separation; however, it can also
be tunably engineered, for example, in hybrid superconductor–
normal–superconductor (SNS) systems, such as the arrays studied
here. In arrays of SNS junctions, the diffusion of electron pairs
from the superconductor into the normal metal11–13—known as the
proximity effect—gives rise to global superconductivity, through a
transition typically described using the phenomenological theory
of Lobb, Abraham and Tinkham (LAT)14. According to the LAT
theory, the T = 0 state is always superconducting, and no zero-
temperature metallic state should appear.

Most previous studies of SNS arrays used islands much larger
than the superconducting coherence length ξSC (that is, having
well-defined superconductivity)1; however, there is evidence that
arrays of mesoscopic islands (that is, islands of dimensions
comparable to ξSC) exhibit behaviour that deviates from the
LAT theory5,15, and might therefore possess non-superconducting
T = 0 states. Furthermore, the dependence of the superconducting
transition on key parameters—such as island spacing and size—has
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Figure 1 |AFM topography of arrays of Nb islands on Au and SEM image
of device. a,b, AFM images of arrays of 87-nm-thick Nb islands (red) on
10-nm-thick Au underlayer (yellow). Each array has an edge-to-edge
spacing of 140 nm (a) and 340 nm (b). The scale bar is 500 nm. c, False
colour SEM image of island array (red rectangle) overlapping Au four-probe
pattern (yellow), with the measurement schematic indicated.

not previously been studied systematically. In this Letter, we present
transport measurements on arrays of mesoscopic niobium (Nb)
islands having systematically varying inter-island spacings, placed
on patterned gold (Au) films. We observe that the device resistance
drops to zero in two steps as the temperature is lowered. The lower-
temperature drop, at temperature T2, is associated with super-
conducting phase-locking across the array; the data show that the
dependence of T2 on island spacing and thickness deviates strongly
from LAT theory. Surprisingly, the higher-temperature drop, at T1,
traditionally associated with the superconducting transition of each
island, also depends strongly on the island spacing, and seems to
extrapolate to zero at finite spacings. This observation implies that
superconductivity on individual islands is fragile, and that a T = 0
metallic statemight be realizable for veryweakly coupled islands.

Our samples consist of 10 nm-thick Au, patterned for four-point
transport measurements, on Si/SiO2 substrates (see Methods for
fabrication details). The Au patterns are overlaid with triangular
arrays of 260 nm diameter Nb islands, as shown in Fig. 1. Each
array contains more than 10,000 Nb islands. The data in this Letter
are from two sets of devices: having 87-nm (±2 nm)- and 145-nm
(±2 nm)-thick Nb islands respectively. The devices in each set
are identical, except for varied island spacing. X-ray diffraction
and scanning electron microscopy of the Nb revealed columnar
grains∼30 nm in diameter, typical of evaporated Nb (ref. 16); thus,
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Figure 2 | Superconductivity in Nb island arrays. a,b, Temperature dependent resistive transitions in arrays having different edge-to-edge island spacings.
The island diameter is 260 nm for all arrays. The islands are 87 nm thick (a) and 145 nm thick (b). Black arrows in a mark T1 and T2 for the islands spaced
140 nm apart. The data are normalized to the resistance at 10 K. Note that T1 and T2 occur at higher temperatures for thicker islands. In a, the lowest
temperature curves are cut off by the minimum attainable temperature of our apparatus. c, The curve illustrates two-step resistance versus temperature
behaviour, with the island transition marked at T1, and film transition marked at T2. Pictures show three islands, each limited to four grains for simplicity. In
region I, the Nb islands are normal metals. In region II, the phase of the grains (represented by arrows) starts to become coherent throughout each island
(although there is not yet inter-island phase coherence). At T1, Cooper pairs diffuse from the Nb into the Au, and the resistance drops. The grains have
intra-island Josephson coupling J and nearest-neighbour inter-island coupling J’(represented by red squiggly lines). In region III, J has saturated, but J’
continues to increase as the normal metal coherence length ξN increases. In region IV, ξN becomes comparable to the island spacing, and the entire system
of film and islands progresses towards having global phase coherence. As the temperature is further decreased, the film undergoes a transition to a
superconducting state at T2.

each Nb island contains ∼50–100 grains. The superconducting
coherence length of Nb is estimated to be ∼27 nm (see Methods),
comparable to the grain size but smaller than the island size.

Figure 2 shows resistance measurements for the devices, as well
as an illustration of the two-step development of superconductivity.
The data in Fig. 2a,b show that both T1 and T2 decrease with
increasing island spacing. The resistance exhibits an abrupt change
in slope at T1, but not the sharp drop seen for larger islands1.
Figure 3 shows a plot of T1 versus island spacing. It is evident that
T1 decreases more rapidly for the shorter islands, but seems to
decrease linearly with spacing for both the shorter and taller islands,
extrapolating to zero at∼840 nm and∼2,600 nm, respectively. The
resultingT =0 states would thus bemetallic in that they would have
finite resistance at finite island spacing. The data in Fig. 2 also show
that T2 is more strongly depressed for shorter islands than for taller
islands. As schematized in Fig. 2c, these trends can be understood
using a model of coupled islands, each composed of grains, having
two characteristic energy scales: (1) J , the coupling between grains
on an individual island, and (2) J ′ (<J ), the coupling between grains
on neighbouring islands. According to this scheme, for T >T1, the
separate grains on each island have incoherent superconducting
phases; at T1, intra-island phase coherence develops, and the
system’s resistance decreases. For very large islands, T1 would
depend only on J , which grows with island height but is spacing-
independent. Formesoscopic islands, however, the T1 of an isolated
island is depressed (possibly to T = 0) by phase fluctuations
among the grains; the inter-island coupling J ′ serves to reduce

these fluctuations by increasing the effective ‘dimensionality’ of
the island system, thereby stabilizing superconductivity. Thus, T1
decreases for larger spacings (that is, as J ′ decreases). Below T1,
the intra-island phase coherence strengthens continuously (Fig. 2c,
region II); thus, the system resistance continuously decreases rather
than steeply dropping at T1. Region III of Fig. 2c shows the familiar
proximity behaviour; here, the normal-metal coherence length17 ξN
increases until it becomes comparable to the island spacing. Then,
inter-island phase coherence begins to emerge (Fig. 2c, region IV),
and at T2 the system undergoes a Berezinskii–Kosterlitz–Thouless
transition to a fully superconducting state1,2.

The inset to Fig. 4 shows how T2 decreases with increasing
island spacing. For each device, T2 was extracted by measuring
the temperature at which current–voltage (I–V ) curves became
nonlinear (see Supplementary Information). The dependence of T2
on array parameters deviates from LAT theory both quantitatively
(that is, T2 decreases more rapidly with island spacing than
predicted) and qualitatively (that is, T2 depends strongly on island
height). Figure 4 also shows the systematic dependence of ξN(T2)
on island spacing, where ξN =

√
h̄D/(kBT ) and the normal-metal

diffusion constant D ≈ 94 cm2 s−1 (see Methods). We observe
ξN(T2) to vary approximately linearly with island spacing.

We now turn to a more quantitative description of these
transitions. From the Ginzburg–Landau perspective, T1 for an
isolated island of lateral dimensions comparable to ξSC should
equal the transition temperature for a continuous film of the
same height, because the suppression of superconductivity due to
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Figure 3 |Dependence of T1 on array geometry. The first transition
temperature T1 is plotted versus island spacing for 87-nm-thick islands
(black squares) and 145 nm thick islands (red circles). Solid lines are linear
fits and dashed curves are fits to equation (3), that is, the coupled-XY-chain
model, in which the coupling J0 and the length scale α are treated as fit
parameters (see text and Methods). J0 depends strongly on island height,
but α is approximately constant. The points for the smallest island spacings
are not shown, as the transitions for this spacing do not show two steps; for
a similar reason, the 140 nm spacing for the thicker islands is shown, but
not included in the fit.

superconductor–vacuum interfaces at the sides is negligible13,18.
This expectation is inconsistent with the pronounced spacing-
dependence seen in the data. Because the islands are themselves
granular, we attribute the unexpected depression of T1 to spatial
fluctuations of the superconducting phase within each island, that
is, among the constituent grains, which have lateral dimensions
comparable to ξSC. The basic physics of the trend of T1 can be
captured by a simpleXYmodel19, governed by theHamiltonian:

H = −J
∑
p

∑
〈ij〉∈p

cos(θi−θj)

− J ′
∑
〈pp′〉

(∑
i∈p

cos(θi)

)(∑
j∈p′

cos(θj)

)
(1)

where θi is the superconducting phase of grain i, p indexes
islands, 〈ij〉 ∈ p denotes nearest-neighbour grains on island p,
and 〈pp′〉 denotes nearest-neighbour islands. Each grain on an
island is assumed to couple with equal strength to every grain on
neighbouring islands; hence the inter-island interaction J ′ can be
regarded as ‘mean-field’. The temperature dependence of J ′ is taken
to have the standard proximity form2,14: J ′(T )≈ J ′0exp(−d/ξN(T )),
where d is the edge-to-edge spacing of the islands and J ′0 is the
coupling amplitude. To reproduce the strong depression of T1
for widely spaced islands, we approximate each island as a one-
dimensional chain of XY spins.

Although one-dimensional coupled spins are by nomeans a fully
realistic description of the experimental system, thismodel captures
the following key features of the data: (1) the strong, non-saturating
depression of T1, and (2) the two-step character of the transition,
that is, the fact that T1 > T2 so that intra-island ordering occurs
before inter-island ordering (see Methods for details). Fits to the
XY-chain model are shown in Fig. 3, and agree reasonably well
with the experimental data. The most notable discrepancy involves
the largest (340 nm) spacing for the thinner islands, for which T1
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Figure 4 |Dependence of T2 on array geometry. The normal-metal
coherence length at T2, ξN(T2), is shown as a function of island spacing.
The temperature T2 for each device was extracted from the
temperature-dependence of I–V curves (see Supplementary Information).
The error bars primarily result from uncertainty in the diffusion constant
(due to the standard deviation in the Au resistance at 10 K). Solid lines are
linear fits and dashed lines are fits to LAT theory (ref. 14). The point for the
closest spaced islands is excluded from the plot, as for them the transition
shows only one step. The inset shows T2 for each device versus
edge-to-edge spacing, for 87-nm-thick islands (black squares) and
145-nm-thick islands (red circle). The open circles mark the Tc of the
unpatterned bilayers (8.75 K and 9.1 K, respectively).

is lower than the model predicts; this might suggest that other
—possibly quantum—fluctuations are significant in this regime.

We now turn to the spacing- and height-dependence of T2. As
seen in Fig. 4, ξN(T2) depends approximately linearly on d ; such
a relationship implies, in particular, that for large d the transition
occurs when d/ξN(T2) is a constant. This observation conflicts with
the LAT theory2,14 (presumed to be valid for our measurement
regime of d > ξN), which predicts that kBT2 ∼ J ′0 exp[−d/ξN(T2)]
(see fits in Fig. 4). The asymptotic constancy of d/ξN(T2) can be
accounted for in one of two ways. The first is to modify the
LAT theory by replacing the proximity expression for J ′ with
the quasiclassical T = 0 expression12, J ′ ∼ 1/d2. This replacement,
strictly valid only for d ≤ ξN(T2), would yield a modified LAT
threshold of the form T2 ∼ 1/d2, and consequently a linear
relationship between d and ξN(T2). Although this modification of
LAT theory reproduces the observed linear relationship, it cannot
explain the height-dependence of T2. An alternative explanation,
which captures both the linear relationship and the height-
dependence, is to retain the proximity-effect form of J ′ but assume
the existence of a mesoscopic energy scale on each island (an
effective ‘charging energy’ or, alternatively, the electronic level
spacing on a grain (M.V. Feigel’man, personal communication))
that competes with superconductivity. In this scenario T2 would
occur when J ′0exp[−d/ξN(T2)]=κ for some constant κ ; this implies
the existence of a minimum inter-island coupling κ that must be
overcome for superconductivity to be attained, even at T = 0, and
consequently the possibility of aT =0metallic state.

Both phase transitions studied in thiswork occur at temperatures
that seem to extrapolate to zero, suggesting the existence of two
quantum phase transitions; in particular, our devices may approach
a quantum superconductor–metal transition, which has been
predicted but not observed3–5,10. The tunability of our devices—
including the ability to vary island geometry, spacing, material
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properties and disorder—thus makes them excellent test-beds for
exploring such transitions. The unconventional metallic state we
observe at temperatures between T1 and T2 is similar to that
predicted for phase-separated quantummetals4,5 in that it possesses
‘regional’ phase correlations, that is, correlations at length-scales
larger than that of single islands but not global in extent. The
ability to stabilize regional correlations, in the absence of long-
range ordering, is characteristic of a variety of inhomogeneous
correlated systems, including high-temperature superconductors20,
coupled magnetic chains21, and strained superconducting films22.
The tunability of our system could thus help elucidate open
questions in these materials.

Methods
Samples. Standard photolithographic techniques and electron beam evaporation
were used to create the 10-nm-thick four-point pattern of Au with a 4 Å Ti adhesion
layer. The Nb islands were then patterned using electron-beam lithography. Before
electron beam evaporation of the Nb islands (in an ultrahigh vacuum system at
∼10−9 torr), the Au surface was Ar+ ion milled to establish a clean interface. For
each sample, six arrays were patterned onto a single Si/SiO2 substrate, each with
different edge-to-edge spacings: d = 90 nm, 140 nm, 190 nm, 240 nm, 290 nm and
340 nm. Four other samples were fabricated; all showed similar data trends, but had
limited data ranges (for example, fewer working devices).

The measurement area of every device is 120 µm×30 µm, so the number
of islands in each array ranges from 11,400 to 33,516, depending on the island
spacing. The large number of islands ensures that discrete percolation paths or
individual junction properties do not dominate the conductance. All Nb islands are
260 nm in diameter, which is about 10 times the Nb Ginzburg–Landau dirty-limit
coherence length ξNbSC (Tc ≈ 9.1K)≈ 27 nm, for an approximate mean free path
l≈ 8 nm.We estimate l from the Einstein relation, using the normal state resistivity
ρ(10 K)≈ 1.12×10−5� cm near the transition of an 87-nm-thick unpatterned Nb
film. X-ray diffraction spectra of Nb films and scanning electron microscopy of Nb
islands showed that the Nb is polycrystalline with growth along the (110) direction,
and grain height equivalent to the film thickness. Scanning electron microscope
(SEM) images revealed an elongated, columnar grain structure. The Au film
resistivity in all devices is ρ(10 K)≈ (6.25±0.75)×10−6� cm, which is extracted
from unpatterned 10-nm-thick films. Using the Einstein relation, we estimate a
diffusion constantD≈ 94.2 cm2 s−1, which yields a mean free path of l≈ 13 nm and
a temperature-dependent coherence length ξN(T )≈268/

√
T nm.

Measurement. All measurements above 1.5 K were carried out in a pumped He-4
cryostat, whereas lower temperature measurements were performed in a He-3
refrigerator. Resistance was measured by standard, low-frequency a.c. lock-in
techniques using an excitation current of 500 nA. To minimize Joule heating, I–V
characteristics were measured using rectangular current pulses, with a current-on
time of 3.5ms and current-off time of 3ms.

Coupled-chain model. The model of coupled XY spin chains introduced in the
main text can be shown to have the following properties: (a) strong, non-saturating
depression of T1 for widely spaced islands, and (b) a value of T1 that is nevertheless
greater than the inter-island coherence temperature T2. By exploiting a mapping
between the XY chain and a quantum mechanical rotor23, one can show that the
threshold for an island to acquire a well-defined superconducting phase in the
mean field of neighbouring islands is

kBT1
√
zJJ ′

coth

(
m

√
zJ ′

J

)
≈ 1 (2)

where z is the coordination number of each island (six for a triangular array)
and m is the number of grains on each island. This model satisfies property (a)
because equation (2) allows for T1 = 0 at J ′ = 0 (that is, isolated islands are
not superconducting). The model also satisfies property (b) as follows. For
temperatures well below T1, the phases of the grains on an individual island
are mutually locked; hence, one can neglect the first term of equation (1).
Then, T2 is given by zmJ ′(T2)≈ kBT2. Comparing expressions for T1 and T2,
we find two separate transitions (that is, T2 < T1) provided that m<

√
J/J ′;

this condition always holds for large J . If we take J to have the proximity-effect
form J ≈ J0 exp(−α/ξN), with α being a constant that is weakly dependent on
individual-island parameters, then equation (2) can be rearranged to yield the
following dependence of ξN on d :

d+α=−ln
[
J0J ′0/ξ

2
N(T1)

]
ξN(T1) (3)

Figure 3 shows that fits of the data to equation (3) are reasonable. Note that the
lack of saturation of T1 seen in the data and reproduced by the model is consistent
with a value of T1 = 0; this admits the possibility of a T = 0 metallic state, similar
to that described in ref. 4.
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