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Topological semimetal in a fermionic optical lattice
Kai Sun1, W. Vincent Liu2,3,4*, Andreas Hemmerich5 and S. Das Sarma1

Optical lattices have an important role in advancing our
understanding of correlated quantum matter. The recent im-
plementation of orbital degrees of freedom in chequerboard1,2

and hexagonal3 optical lattices opens up a new avenue to-
wards discovering novel quantum states of matter that have
no prior analogues in solid-state electronic materials. Here,
we predict that an exotic topological semimetal emerges as
a parity-protected gapless state in the orbital bands of a
two-dimensional fermionic optical lattice. This new quantum
state is characterized by a parabolic band-degeneracy point
with Berry flux 2π, in sharp contrast to theπflux of Dirac points
as in graphene. We show that the appearance of this topological
liquid is universal for all lattices withD4 point-group symmetry,
as long as orbitals with opposite parities hybridize strongly
with each other and the band degeneracy is protected by
odd parity. Turning on inter-particle repulsive interactions, the
system undergoes a phase transition to a topological insulator
whose experimental signature includes chiral gapless domain-
wall modes, reminiscent of quantum Hall edge states.

The search for topological states of matter has been a focus
of theoretical and experimental studies since the discovery of the
quantum Hall effect4. This problem was brought to the forefront
again recently by the theoretical prediction and experimental
discovery of the time-reversal invariant Z2 topological insulators
in semiconductors with strong spin–orbit couplings5–11. (For
recent reviews see refs 12 and 13.) For non-interacting particles,
the topological properties of insulators as well as topological
superconductors have recently been classified on the basis of the
anti-unitary symmetries of the systems14,15. However, this elegant
topological classification does not apply to Fermi liquid (metal or
semimetal) states owing to the existence of fermionic low-energy
modes in gapless systems. In this paper, we shall show, however, that
a novel type of topologically non-trivial semimetal unexpectedly
arises as a universality class for arbitrary two-dimensional lattices
with D4 point group symmetry owing to the mixing of orbitals of
opposite parity. We believe that our discovery should be rather
easily realizable in fermionic cold-atom optical lattices.

The physics of higher orbtials in optical lattices has recently
emerged as an exciting new front in both theoretical16–18 and
experimental (for example, early19–22 and recent1–3) studies. We
specifically examine a model system that resembles the D4
symmetric double-well lattice reported in refs 1 and 2, but our
conclusions apply generally to other lattices with the same point-
group symmetry. Consider the optical lattice shown in Fig. 1a
with the potential

V (x,y) = −V1[cos(kx)+cos(ky)]

+V2[cos(kx+ky)+cos(kx−ky)] (1)
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Here, k = 2π/a and a is the lattice constant. x and y are the
coordinates in 2D configuration space. The parameters V1 and V2
are chosen to be positive. This optical lattice can be formed using a
single chromatic light field following the experimental set-up shown
in Fig. 1b for V2/V1≥ 1/2. For completeness, we will first consider
the general situation with V2/V1 ≥ 0. Then, we will show that the
parameter range of interest in our work isV2/V1∼2/3>1/2, which
can be realized using the proposed experimental set-up shown in
Fig. 1b and is discussed in theMethods section.

For V2 = 0, the V1 term induces a square lattice with lattice
constant a. As V2 increases, the potential energy at the centre of a
unit cell (with coordinates (0,0)) is increased whereas the potentials
near the bond centres (with coordinates (±a/2,0) and (0,±a/2))
are reduced. ForV2>V1/2, each unit cell contains potentialminima
located at (±a/2,0) and (0,±a/2), as shown in Fig. 1a.

We numerically solve the band structure of this lattice by means
of plane-wave expansions and find that band degeneracy points
appear between higher orbital bands at the 0 and M points (the
centre and corner of the Brillouin zone). For the lowest four bands,
as shown in Fig. 2, in the small-V2 limit, the second and third bands
cross at both0 andM points. For largerV2, there are still two band-
degeneracy points for the lowest four bands, but now the second and
third bands only cross at M, whereas the third and fourth bands
become degenerate at 0. For even larger V2 (not shown), the first
and second bands become degenerate at M, whereas the third and
fourth bands touch at 0. This large V2 limit is dominated by the
same physics as in the intermediateV2 regime and, thus, wewill only
focus on the small and intermediateV2 in this paper.

The band-degeneracy phenomenon described above is generic
and stable. In fact, as shown in the Supplementary Information,
for non-interacting particles these band-degeneracy points are
topologically protected and remain stable when system parameters
are tuned adiabatically, as long as the lattice point-group symmetry
is maintained (although a band-degeneracy point may move from
between the n and n+1 bands to them andm+1 bands, as shown
in the examples above). As detailed in the Methods section and
the Supplementary Information, near the band-degeneracy point,
a 2D vector field (hk) in momentum space can be defined using
the Hamiltonian of the system. At momentum k, the length of this
2D vector (|hk|) gives (half of) the energy splitting between two
energy bands. For the band-degeneracy points in our model, this
vector field possesses a topological defect, a vortex with winding
number 2. At the vortex core, the length of the vector vanishes
(|hk| = 0), indicating that the bandgap vanishes here (that is, a
band-degeneracy point appears). It is this topological property that
dictates the stability of the band degeneracy against any adiabatic
deformation. From a mathematical point of view, this non-trivial
topology can be described rigorously using the topological index of
the Berry flux, which is 2π for this case.
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Figure 1 | The optical lattice potential and its experimental
implementation. a, The optical lattice potential described by
equation (1). Here we choose V1= 2.4ER and V2= 1.6 ER, where
ER= h2/(2mλ2)= h2/(4ma2) is the recoil energy, with h being the Planck
constant, m being the mass of the particle, λ being the wavelength of the
light beam and a being the lattice constant. The plane at the bottom shows
the contour plot of the same potential. The red square marks a unit cell and
the green dots indicate the two energy-minimum points of this unit cell
located at the bond centres. b, The experimental set-up to realize the lattice
potential in equation (1) for V2/V1 ≥ 1/2. The linear polarization of the
incident monochromatic light beam (solid blue line) encloses an angle α
with respect to the direction normal to the drawing plane. The black bars
represent mirrors and the dashed arrows mark the x and y directions of the
coordinate system. See Methods for details.

In addition, the band-degeneracy point is also protected by
the parity of the Bloch wavefunctions under space inversion. In
fact, as shown in the Methods section, it turns out that all the
essential physics of the topological semimetal can be understood
within a simple tight-binding picture, without considering the full
band-structure theory, and the key ingredient for this phenomenon
is the mixing between the orbitals of opposite parity. In the
particular model we consider here, the semimetal is formed by
the hybridization between the d orbital and the two p (px and py)
orbitals at each lattice site.

Wenowdiscuss the instability of the topological semimetal in the
presence of interaction; the details are presented in Supplementary
Information. We start with the tight-binding Hamiltonian and
derive an effective low-energy theory around the Fermi point,
which in this case is the degeneracy point of the third and
fourth band (Fig. 2b). It turns out that this effective theory in the
presence of interaction can be mapped onto a general theoretical
model of d-wave symmetry which was analysed in refs 23,24
by means of the renormalization-group technique. Therefore, by
mapping the results back from that d-wave model, we obtain the
universal property for the band-degeneracy point of the topological
semimetal we present here. Below,we summarize themain results.
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Figure 2 | The single-particle energy spectrum (measured in units of ER)
for the lowest four bands and the topological structure near
band-degeneracy points. a, b, Band structure for the momenta along the
contour from 0 to M to X and back to 0. This contour is shown in the inset
in a represented by the blue lines with the red square marking the Brillouin
zone. At V1= 2.4ER, two different types of band structure are observed.
a, Band structure at V2 <0.87ER (here, V2=0.4ER), where the
hybridization between different orbitals is weak. We refer to this type of
band structure as the weak-hybridization limit. b, Band structure at
V2 >0.87ER (here, V2= 1.6ER). This case is referred to as the
strong-hybridization limit. The dashed line in b marks the chemical
potential, at which the system becomes a topological semimetal. The
marginal case V2=0.87ER is shown in the Supplementary Information,
where all the three upper bands touch at the 0 point.

As the temperature is lowered below a critical value, Tc,
the system undergoes a second-order phase transition, where
Tc∼W e−α/N (0)V with N (0) the density of states at the chemical
potential, V the interaction strength and W the bandwidth. The
parameter α is a dimensionless constant whose value is determined
by the band structure. In ourmodel, the order parameter describing
this low-temperature ordered phase is the z-component of the
angular momentum 〈Lzr〉=−i〈p

†
x,rpy,r−p

†
y,rpx,r〉, where px,r and py,r

are the fermion annihilation operators of the px and py orbitals on
site r. (This order parameter can be mapped to the order parameter
Φ in the general theory studied in ref. 23.)

In our system, the repulsive interaction can be reformulated as

Hint=V
∑
r

p†
x,rpx,rp

†
y,rpy,r=−

V
2

∑
r

(Lzr)
2 (2)

where V > 0 is the interaction strength. This interaction term
favours a state with non-zero angular momentum 〈Lz 〉 6= 0. In
an ordinary metal or insulator (or graphene25), the formation of
non-zero angular momentum costs kinetic energy, which usually
dominates over the energy gain from interaction unless the
interaction strength is very large. However, for the topological
semimetal at low enough temperature, we find the energy cost
for non-zero 〈Lz 〉 from the kinetic part is always subleading
compared with the energy gain from interaction. This results in
the spontaneous generation of angular momentum, which is a key
theoretical insight of our work.

From a symmetry point of view, this low-temperature phase
spontaneously breaks theD4 point group symmetry down toC4, and
also breaks the time-reversal symmetry. This symmetry-breaking
pattern belongs to the Ising universality class, resulting in two
degenerate ground states with opposite angularmomentum.

As for the band structure, the band degeneracy at 0 is lifted in
the symmetry-broken phase. (The degeneracy at M is also lifted.
However, this is not relevant to our study as that degeneracy point
is located far below the chemical potential.) Hence the topological
semimetal becomes a fully gapped insulator in the presence of
interaction, with the gap being V 〈Lz 〉.

This insulator turns out to be topologically non-trivial, charac-
terized by the non-trivial value of the topological index, known as
the first Chern number. The Chern number for this state is 1, which
indicates that this system shares the same topological properties
as the quantum Hall state with filling 1. However, in contrast to
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the quantum Hall effect, where the non-trivial topological state
is induced by a strong external magnetic field, here the same
quantum topological state of matter originates from many-body
effects in the absence of any external magnetic field. In general,
states with non-zero Chern number in the absence of an external
magnetic field are known as the anomalous quantum effect states,
first proposed in a toy model on a honeycomb lattice by Haldane26.
Recently, several different possible realizations of the Haldane
model in cold gases have been discussed using lattice rotations27
or light-induced vector potentials28. In our predicted topological
phase, however, interaction plays a decisive role, in sharp contrast to
the non-interacting situation prevailing in the quantum Hall effect
or anomalous quantum Hall effect. To the best of our knowledge,
our work is the only theoretical prediction in the literature of an
interaction-driven anomalous quantumHall state.

Furthermore, if two spin components are both present in the
atomic gases, the same interaction effect may lead to a time-
reversal invariant Z2 topological insulator. This phenomenon can
be partially understood as an interaction-driven 2D-version of
HgTe. As pointed out in ref. 8, the combined effect of spin–orbit
coupling and strain opens a gap at a 3D quadratic band-degeneracy
point and leads to a 3D topological insulator. By contrast, in
our 2D system, topological states arise purely because of many-
body interaction effects.

To further demonstrate the topological nature of this insulating
phase, we computed the band structure of this state on a cylinder,
as shown in Fig. 3. Here, although the bulk modes are all gapped,
there is a gapless topological chiral edge state on each of the two
edges of the system, which is the direct signature of a topologically
non-trivial insulator.

The phase transition being discussed in our work has a
strong analogue in the Bardeen–Cooper–Schrieffer (BCS) theory of
superconductivity. In particular, the two classes have similar scaling
formula for themean-field transition temperature (TC∼ e−α/N (0)V ).
However, the phase transition here breaks only a discrete symmetry
(time reversal) and thus belongs to the Ising universality class.
In 2D, the fluctuation effect is weak for an Ising transition and
long-range order is sustained at finite temperature. In contrast, the
BCS transition breaks the continuous U (1) symmetry and belongs
to the XY universality class. As a result, the BCS transition in 2D
is a Kosterlitz–Thouless transition, whose transition temperature is
strongly suppressed by phase fluctuations and is much lower than
the mean-field prediction. Thus the transition temperature for our
problem should bemuch higher than the BCS transition, if all other
parameters (N (0), V , and so on) have the same value. Therefore,
under equivalent conditions the phase transition predicted by us
should be much easier to observe in 2D optical lattices than the
corresponding BCS Kosterlitz–Thouless transition.

Beyond its theoretical significance, the topological semimetal
state also has robust and unique experimental signatures. For
example, the energy-band structure of the unique band-crossing
degeneracy point can be detected directly using experimental
techniques such as Bragg scattering29, as discussed in the Supple-
mentary Information.

At low temperatures, the system remains a topological semimetal
for attractive interactions but becomes an insulator for repulsive
interactions. As both the values and the signs of interaction can
be tuned in ultra-cold gases, this phase transition, between a
compressible liquid and an incompressible insulator, can be studied
experimentally by measuring the compressibility for different
interactions. In addition, Bragg scattering can also be used to detect
the insulating gap induced by the repulsive interactions. Because the
low-temperature topological insulating state spontaneously breaks
the time-reversal symmetry, any experimental measurements
sensitive to the time-reversal symmetry, such as the Hall effect, can
also be used to identify this phase.

a

b

Figure 3 | Topologically protected edge states and domain-wall modes.
a, The single-particle energy spectrum of the insulating phase with 〈Lz〉 6=0
computed within the mean-field approximation on a cylindrical geometry
(see Supplementary Information for technical details). The horizontal axis
is the momentum defined along the periodical direction of the cylinder
(from−π/a to π/a) and the vertical axis is the energy. The pink curves on
the bottom describe the states in the valence bands filled with particles,
whereas the blue curves in the top part are the empty band. The green and
red curves are the chiral gapless edge states located on the two edges of
the cylinder, as shown in b. b, Schematic picture showing the geometry of
the system we used to compute the edge states. The black solid lines show
the underlying square lattice. The two thick lines at the edges (red and
green) represent the chiral edge states, with arrows indicating the chirality.
The length of the cylinder we used is 30a, with a being the lattice spacing.
In this case, the finite-size effects are negligibly small.

The direct experimental evidence for a topological insulator is
the gapless chiral edge state, which is a metallic state localized on
the edge of a topologically non-trivial insulator. However, it is
worthwhile to note that the sharp edge in the condensed matter
system is absent in cold-atom gases. Owing to the existence of the
slowly varying trap potential, one expects the density to decrease
away from the centre of the trap. Therefore, the system is a liquid
near the edge because of the low filling fraction. This liquid state
from incommensurate filling will hybridize with the topological
edge state, which makes the observation of the topological edge
states challenging in atomic systems. This difficulty can be avoided if
two domains of topological insulating phases with opposite angular
momenta are induced. At the domain wall between these two areas,
compressible chiral domain-wall states should exist. As this domain
wall can be chosen to locate near the centre of the trap, far away from
the trivial liquid state near the edge of the system, it should in prin-
ciple provide a clean signature for the topological edge states. These
domain-wall modes can also be detected using Bragg scattering,
where one finds that the insulating gap is reduced to zero near the
domain wall. In each real experimental system, owing to the finite
number of particles on a particular optical lattice, the vanishing
of the insulating gap at the domain wall is in fact prohibited by
finite-size effects. For topological insulators, such finite-size effects
have been systematically studied and the metallic edge states are
found to be detectable even for a system of about ten particles30.
An alternative experimental way of seeing the topological edge state
would be to have a sharp trap boundary, as in a square-well po-
tential, which would suppress the hybridization between the trivial
liquid phase and the edge topological state. In such a square-well
trap, the topological edge state shouldmanifest itself directly.
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Methods
Creation of the optical lattice. In the experimental set-up shown in Fig. 1b of the
Letter, by superimposing two monochromatic optical standing waves oscillating in
phase, we implement the electric field

E = ε

 − 1
√
2
sinα

1
√
2
sinα

cosα

cos
[
k(x+y)/2

]

−ε

 1
√
2
sinα

1
√
2
sinα

cosα

cos
[
k(x−y)/2

]
The corresponding light-shift potential is U (x,y)=−χ |E(x,y)|2, with χ denoting
the real part of the polarizability. It is straightforward to check that this potential is
identical to the potential we propose in themain text, up to a trivial constant:

U (x,y) = −V1[cos(kx)+cos(ky)]

+V2[cos(kx+ky)+cos(kx−ky)]−χε2

with
V1=−χε

2cos2α

V2=−χε
2/2

By choosing blue detuning, that is, χ < 0, we obtain V1 > 0 and V2 > 0.
When the polarization direction, α, is changed, the ratio V2/V1 can be tuned
to any value above 1/2. For example, using fermionic potassium 40K with a
principal fluorescence line at 767 nm, a standard green frequency-doubled
Nd:YAG-laser (532 nm) would be a suitable light source for implementing the
desired optical potential.

Hybridization between orbitals of opposite parity. It turns out that all the
essential physics of the topological semimetal can be understood within a simple
tight-binding picture and the key ingredient for this phenomenon is the mixing
between orbitals with opposite parities under space inversion. Here, we outline
the main procedures and results of the calculation for the mixing of parity-even
dx2−y2 and parity-odd px and py orbitals, and defer the details (for example, model
Hamiltonian, band structure, and so on) to Section S-6 of the Supplementary
Information. In this study, these three orbital bands are considered next to the
chemical potential level and all other orbitals are assumed to be separated far
from them (such that their effects can be dynamically ignored). When the mixing
between the two types of orbitals is weak, the parity-odd orbitals form two bands,
which cross each other at the 0 and M points, wheras the band formed by the
parity-even orbitals shows no degeneracy (similar to the situation shown in Fig. 2a,
which was obtained by numerical diagonalization). In contrast, as the mixing
between different types of orbitals is enhanced, the three bands formed by these
three orbitals hybridize together, and now the middle band crosses with both the
other two bands, one at 0 and another at M, similar to Fig. 2b. In fact, the top
three bands shown in Fig. 2 are mainly contributed by the px , py and d orbitals. In
the Supplementary Information, a full comparison is provided between the band
structure of the optical lattice model defined by the potential equation (1) and that
of the effective three-orbital (px ,py ,dx2−y2 ) tight-bindingmodel.

Instability under infinitesimal repulsion. Using the conclusions from ref. 23, we
found that under the renormalization group, the repulsive interaction shown in
equation (2) is a marginally relevant perturbation and it is also the only relevant
perturbation for spinless fermions with short-range interactions. Therefore, at
low temperature, this interaction term dominates the low-energy physics and
will stabilize a state with non-zero angular momentum 〈Lz 〉 6= 0. This state is a
topological insulator with Chern number 1, in agreement with the general study
shown in ref. 23. This conclusion is further verified in Fig. 3, where we examined
the mean-field single-particle spectrum for a cylindrical geometry and observed the
gapless chiral edge states.
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