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Quantum phase transition to unconventional
multi-orbital superfluidity in optical lattices
Parvis Soltan-Panahi†, Dirk-Sören Lühmann†, Julian Struck, Patrick Windpassinger
and Klaus Sengstock*
Orbital physics plays a significant role for a vast number of
important phenomena in complex condensed-matter systems,
including high-temperature superconductivity and unconven-
tional magnetism. In contrast, phenomena in superfluids—in
particular in ultracold quantum gases—are typically well de-
scribed by the lowest orbital and a real order parameter1. Here,
we report on the observation of a multi-orbital superfluid phase
with a complex order parameter in binary spin mixtures. In this
unconventional superfluid, the local phase angle of the complex
order parameter is continuously twisted between neighbouring
lattice sites. The nature of this twisted superfluid quantum
phase is an interaction-induced admixture of the p-orbital
contributions favoured by the graphene-like band structure
of the hexagonal optical lattice used in the experiment. We
observe a second-order quantum phase transition between the
normal superfluid and the twisted superfluid phase, which is
accompanied by a symmetry breaking in momentum space.
The experimental results are consistent with calculated phase
diagrams and reveal fundamentally new aspects of orbital
superfluidity in quantum gas mixtures. Our studies might
bridge the gap between conventional superfluidity and complex
phenomena of orbital physics.

The topological properties of graphene and its remarkable
band structure have recently opened a new field in physics2.
The linear dispersion relation at the Dirac points proves to be a
fascinating key aspect of this material, as it gives rise to phenomena
such as quasirelativistic particles3 and an anomalous quantum
Hall effect4,5. The possibility to realize hexagonal optical lattices6
enables the emulation of graphene-like physics with ultracold
atoms7–9. In particular, loading bosonic particles in such lattices
renders completely new possibilities such as studying next-nearest-
neighbour processes and tunnelling blockades in multicomponent
systems6. In general, optical lattices have proven to be a versatile
tool to simulate Hubbard-like systems and actively drive and
monitor quantum phase transitions10–14. The important role of
higher orbitals has recently been demonstrated for quantum gas
mixtures in the strongly correlated regime15–18. However, for
weakly interacting systems such as superfluids, higher orbitals
are generally expected to have only marginal effects. So far,
orbital superfluidity has been observed only in excited states with
limited lifetimes19–21.

Here, we demonstrate the realization of a bosonic superfluid
ground state where higher-orbital physics plays a crucial role. In
conventional superfluids (Fig. 1a), the local phase angle Φ(r) of
the order parameter

ϕ(r)=
√
n(r)eiΦ(r) (1)

Institut für Laser-Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. †These authors contributed equally to this work.
*e-mail: sengstock@physnet.uni-hamburg.de.

is constant (represented by arrows), where n(r) denotes the particle
density. Therefore, the order parameter ϕ(r) can be chosen as
real. In contrast, the observed twisted superfluid (TSF) ground
state reveals a non-trivial complex superfluid order parameter,
where the phase factor eiΦ(r) is continuously twisted in the complex
plane (Fig. 1b). As we shall demonstrate, this unconventional
behaviour arises from a strong interaction-induced coupling of
s and p orbitals at zero quasimomentum. This is fundamentally
different to previous studies where all atoms are excited to the
metastable p orbital and condense at finite quasimomentum19–25.
Most strikingly, even a quantum phase transition between the
normal superfluid (NSF) and the TSF phase is directly observed in
our experiment. It is driven by the competition between intra- and
interspecies interactions in binary mixtures coupling s and p bands.
More precisely, in shallow lattices the intraspecies interaction Wsp
dominates, whereas the interspecies interaction Vsp dominates for
intermediate lattice depths, which is further elaborated below. For
the experimental realization, we use a 1:1 mixture of ultracold 87Rb
atoms in two spin states |F ,mF 〉 of the hyperfine manifold F = 1,2
with Zeeman states mF (see Methods). The repulsively interacting
atoms are confined in a spin-dependent hexagonal optical lattice6.

As a central aspect, the formation of the twisted superfluid phase
originates from both the spin dependence and the specific topology
of the hexagonal lattice. The topology leads to a graphene-like band
structure with the particular feature that s and p bands are separated
only by the order of the tunnelling energy. In addition, the spin
dependence induces an individual sublattice structure for different
|F ,mF 〉 states. This leads to an alternating density modulation for
|F ,mF 6=0〉 spin states (see Fig. 1c). Themutual interaction between
different spin states induces a redistribution of both species, leading
to an admixture of the p orbital. The combination of both topology
and state dependence causes a strong coupling of s and p bands for
the case of spin mixtures.

In the following, we first explain how the TSF phase can
be identified experimentally and subsequently discuss theoretical
phase diagrams as well as experimental results in detail. The
NSF phase possesses the expected six-fold rotational symmetry
in momentum space. This is observed in experiments through
time-of-flight (TOF) imaging for all single-component spin states
and is exemplarily shown for |1,−1〉 in Fig. 2a. In stark contrast, the
twisted superfluid phase is accompanied by a symmetry breaking
in momentum space, which appears as an alternating pattern in
the first-order momentum peaks (Fig. 2b). This reduced three-fold
rotational symmetry reflects the occurrence of a twisted complex
phase factor eiΦ(r), which we observe only for mixtures of two
spin states. We observe no significant decay of the alternating
pattern for holding times up to 100ms. This is comparable to
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Figure 1 | Normal and twisted superfluid phases. a,b, The contour plots depict the superfluid order parameter ϕ(r)=
√
n(r)eiΦ(r) (red lines) in the

hexagonal lattice. The arrows and colour coding represent the local phase angles Φ(r). a, Normal superfluid: single-component spin systems exhibit a real
superfluid order parameter with constant local phases. b, Twisted superfluid: in binary spin mixtures, the local phases Φ(r) vary continuously between the
sites of the hexagonal lattice, leading to a complex superfluid order parameter for both components. This twisted phase is caused by a complex admixture
of the p band. c, The spin-dependent lattice causes a density modulation in dependence on the spin state |F,mF〉. The s- and p-orbital wavefunctions as well
as the spin-dependent potentials are shown as a one-dimensional cut along two adjacent lattice sites.
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Figure 2 | Symmetry breaking in momentum space. a, The normal superfluid phase shows a six-fold rotational symmetry due to the lattice geometry.
Averaged TOF images are shown for different lattice depths (indicated in the images). b, For certain binary mixtures, an interaction-induced reduced
three-fold rotational symmetry is clearly observed for both constituents being separated by a Stern–Gerlach field (shown is a 1:1 mixture of |1,−1〉 and
|1,+1〉 atoms). The triangular pattern is opposite for the two constituents. The six-fold rotational symmetry is restored for large lattice depths. c, Calculated
TOF images reflecting the momentum distributions for s- and p-orbital wavefunctions for |F,mF =0〉, where the p-orbital wavefunction in momentum
space is complex and has an alternating sign in its first-order peaks. A complex superposition of the two orbitals leads to the observed triangular TOF
pattern for the TSF phase even for small admixtures of the p orbital, whereas for real superpositions the six-fold rotational symmetry is preserved (shown
for p-band admixtures of np= 1−ns=0.05 and θ =0,±π/2).

the lifetime of the normal superfluid, reflecting the ground-state
nature of the twisted superfluid phase. Figure 2b shows the results
for a 1:1 mixture of |1,−1〉 and |1,+1〉 atoms, where the spin
states are separated in the experiment by a Stern–Gerlach field. The
occurrence of the twisted superfluid phase is clearly visible for very
small lattice depths. Here, both components show a complementary
momentum distribution reflecting the opposite phase twist as
indicated in Fig. 1b. For increasing lattice depths, the transition
to the normal superfluid phase is observed by the restoration
of the six-fold rotational symmetry (Fig. 2b). Finally, the overall
interference contrast vanishes as the system approaches the Mott
insulator phase, where the atoms localize on individual lattice sites.

Remarkably, the clear signature of the TSF phase persists even
for p-band admixtures as small as a few per cent, which is a typical
value in our experiment. This relies on the fact that the first-order

momentum peaks of the p orbital are much stronger than those of
the s orbital, leading to a strong amplification of the p-band con-
tributions, which can be clearly identified in the TOF images (see
Fig. 2c). The observed alternating pattern for the twisted superfluid
is caused by the quantum interference of s- and p-band contribu-
tions at zero quasimomentum (see equation (4)), which enables an
extremely sensitive probing of the local phase properties through
TOF. Note that the interference requires that s- and p-orbital
contributions occupy the samequasimomentum state (hereq=0).

The connection between the hybridization of s and p orbitals
and the transition to the TSF phase can be explained as follows.
In general, a superposition between s orbital |s〉 and p orbital
|p〉 can be written as

|ϕ〉/
√
N =
√
ns|s〉+eiθ

√
np|p〉 (2)
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Figure 3 | Quantum phase transition to a twisted superfluid phase. a, Zero-temperature phase diagram for the |1,0〉 state in an equal admixture with the
|1,+1〉 state. The diagram is parameterized by the relative occupation of the p orbital np= 1−ns and the hexagonal lattice depth V0. The white area defines
the NSF and the blue area the TSF, where the colour encoding represents the value of the order parameter θ . b, Phase diagram of |1,−1〉 in an equal
admixture with |1,+1〉 (A), |2,−2〉 (B) and |2,+2〉 (C). For a lattice depth of V0= 5–6 Erec, the system undergoes the transition to a Mott insulator (MI),
where the entrance points depend on the particular spin mixture6.

where the coefficients ns and np denote the fraction of atoms in
the s and the p orbital, respectively, and N the total number of
particles. The global phase angle θ between the two orbitals is
crucial for the formation of the twisted superfluid. It takes the value
which minimizes the energy of the system and can lead to two
different physical situations: For θ = 0 (or π), the system is in the
normal superfluid phase, where no interference takes place and the
alternatingmomentumpattern vanishes (Fig. 2c). In contrast, θ 6=0
causes a destructive interference of the first-order peaks, thereby
revealing the twist of the local phases Φ(r). Thus, the global phase
angle θ takes the important role of an order parameter describing
the phase transition between NSF and TSF, where the TSF phase is
defined by a non-zero value of θ .

We explore this phase transition theoretically using a multiband
mean-field approach (see Methods), which leads to the phase dia-
grams presented in Fig. 3. The phase diagrams show the results for
different binary spin mixtures. In agreement with the experimental
results, the twisted superfluid emerges only in shallow lattices.
It is important to mention that, in our hexagonal optical lattice
configuration, different spin states preferably occupy different
sublattices and therefore the interplay of intra- and interspecies
interaction strongly depends on the spin mixture considered. In
particular, the phase diagrams in Fig. 3b demonstrate that the TSF
phase area is drastically reduced for spin mixtures predominantly
occupying the same sublattice (mixture C) in comparison with
spinmixtures where each component occupies a different sublattice
(mixtures A and B). In addition, the occurrence of the TSF phase
depends on the admixture of the p-band orbital, where np vanishes
at zero lattice depth and is expected to reach a few per cent for
intermediate lattice depths under experimental conditions. This
also explains the absence of the TSF phase for single-component
samples (Fig. 2a)where the population of the p orbital is negligible.

In the following, we experimentally investigate the phase
diagrams above. As an experimental indicator characterizing the
NSF and TSF phase, we define a triangular interference contrast
I4, which is illustrated in Fig. 4. It serves as a measure of the order
parameter θ of theNSF–TSF transition, where I4 6=0 corresponds to
the TSF phase. For spin mixture A, the TSF phase is clearly resolved
for V0< 4 Erec (Fig. 4a), where Erec is the recoil energy. As expected
for symmetry reasons, both components exhibit the same triangular
contrast |I4|. In the limit of zero lattice depth, the admixture
np is negligible, which leads to a vanishing I4. As np increases
with the lattice depth and I4 vanishes at the phase boundary, a
maximum can be observed in the triangular interference contrast.
In accordance with the phase diagrams presented in Fig. 3, mixture
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Figure 4 | Observation of the NSF–TSF quantum phase transition.
a,b, Absolute value of the triangular interference contrast I4 (see inset) as
a function of the lattice depth V0 for spin mixture A (a) and spin mixtures B
and C (b). The TSF phase is identified by a non-zero value of I4, whereas I4
vanishes in the NSF phase. The error bars indicate the standard deviation of
the mean.

B exhibits a similar behaviour to mixture A, where in both cases
different sublattices are occupied by the constituents (Fig. 4b). The
substantial difference of the predicted TSF phase areas for mixtures
B and C is also clearly revealed in our experiment.

To gain further insight into the underlying processes of the
NSF–TSF transition, we turn back to its theoretical description.
The observed quantum phase transition is entirely driven by the
competition between intra- and interspecies interactions and can
thus occur at zero temperatures.We applymean-field theory, where
we restrict our analysis to an effective two-mode Hamiltonian25

(see Methods). For the superfluid order parameter, we consider
s- and p-band contributions described by equation (2), where the
order parameter of the transition θ is the relative phase angle
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between the two orbitals. In the calculation, higher bands and
non-zero-quasimomentum states can be ignored to first order.

For simplicity, we discuss here a mixture of |1,0〉 with |1,−1〉
atoms (see Fig. 3a). In this case, the symmetry of s- and p-band
wavefunctions for |1,0〉 leads to only two competing θ-dependent
terms in the energy functional, namely, the interspecies interaction
vsp(θ) = 2N 2Vsp

√nsnp cos(θ) and the intraspecies interaction
wsp(θ)= 2N 2Wsp nsnp cos(2θ). Here, N is the number of particles
in each component; Vsp and Wsp are integrals of s- and p-orbital
wavefunctions with Vsp< 0 andWsp> 0 (see Methods). Physically,
vsp describes a collision of two particles with different spin states,
where one particle is promoted from the s to the p band, whereas
the intraspecies interaction wsp promotes a pair of particles of the
same species from the s to the p orbital. For sufficiently small
p-band admixtures np, the interspecies interaction vsp dominates
and therefore θ = 0 minimizes the energy, which corresponds to
a normal superfluid. However, for a critical value of np the energy
functional vsp(θ)+wsp(θ) no longer exhibits a minimum at θ = 0.
As a central result, this defines the phase boundary ncritp of the
NSF–TSF transition, which is given for the considered case by

ncritp =
1
2
−

√
1
4
−

(
Vsp

4Wsp

)2

(3)

The phase transition is of second order as the second derivative
of the energy functional is discontinuous at this boundary.
In the applied theory, the Hamiltonian is invariant under the
transformation θ → −θ causing a twofold degenerate ground
state in the twisted phase. This corresponds to the two possible
orientations of the triangular pattern with opposite signs of I4
(see Fig. 2b,c). However, in the experiment always the same one of
the two ground states is observed. Further studies are necessary to
investigate this non-spontaneous symmetry breaking.

Our study of a new type of complex superfluid phase paves
the way for further investigations of the interplay between
orbital physics and strong correlations. In particular, a possible
competition between the twisted superfluid and the strongly
correlated Mott insulator phase can be realized by increasing
the interactions, for example by means of Feshbach resonances.
Moreover, further insight into the roles of intra- and interspecies
interactions can be gained using binary mixtures consisting of
two different atomic states, where the two interactions differ
considerably from each other. In addition, dynamically driven
phase transitions may be observable in our systems by preparing a
dynamical superposition of s and p orbitals for one of the two spin
components throughmicrowave coupling.

Methods
Creation of spin-dependent hexagonal lattices. The spin-dependent hexagonal
lattice is realized by intersection of three coplanar laser beams under an angle of
120◦. The laser beams are derived from a Ti:sapphire laser operated at a wavelength
λL= 830 nm (red detuned), where each beam is linearly polarized within the plane
of intersection. Orthogonal to the plane, we apply a retro-reflected one-dimensional
lattice at V1D = 8.8 Erec operated at the same wavelength (for details see ref. 6).
The recoil energy Erec is defined as Erec = h̄2k2L/2m with the wavevector of the laser
kL= 2π/λL and the massm of an 87 Rb atom.

Preparation and detection schemes for spin mixtures. We start with a
Bose–Einstein condensate of typically several 105 atoms in the stretched state
|1,−1〉, which is confined in a nearly isotropic crossed dipole trap with a trap
frequency ω≈ 2π × 90Hz. For these experimental parameters we expect a
maximum filling factor of approximately four to six particles per lattice unit cell,
which decreases towards the edge of the system owing to the inhomogeneous
trapping potential. The preparation of the different pure and mixed spin states
is carried out with the aid of radiofrequency and/or microwave sweeps. After the
state preparation we apply a homogeneous magnetic field of 1.1 G to suppress spin
dynamics26 and ramp up the optical lattice within 55ms using an exponential
ramp. Within the ramping time the coherence between different spin states is lost.
To separate different spin components during 27ms TOF, a Stern–Gerlach gradient

field is applied before absorption imaging. The density distribution after TOF ρTOF
reflects the momentum distribution in the lattice and can be calculated using the
Fourier transform of Bloch wavefunctions ϕ̃s,p

ρTOF(r)∝ ns|ϕ̃s(k)|2+np|ϕ̃p(k)|2+2
√
nsnp Re

(
ϕ̃∗s (k)ϕ̃p(k)e

iθ ) (4)

with k=mr/h̄t . Whereas for θ = 0 or π the third term vanishes, it causes an
interference effect for other phase angles θ (for example for |F ,mF = 0〉 as
shown in Fig. 2c the function ϕ̃s is real and ϕ̃p is imaginary). The simulated
TOF images in Fig. 2c show the time evolution of the ensemble taking the finite
trap size into account.

To verify independently the emerging interference pattern for different values
of θ , we carry out a microwave excitation of the spin state |2,−2〉 to |1,−1〉. In this
way we create a superposition of s and p orbitals in the |1,−1〉 state, which evolves in
time t as

√
ns|s〉+e−i1Esp t/h̄√np|p〉, where the oscillation frequency of the triangular

interference contrast I4 matches the energy difference of s and p bands 1Esp. The
observed features show the same pattern as shown in Fig. 2 when replacing θ by the
time-dependent expression θ→−1Espt/h̄.

Theoretical model. To first order, N particles of the spin species σ experience the
interaction with the non-interacting densityM |φσ ′ (r)|2 of the other species σ ′ with
M atoms. Thus, we canwrite the effectiveHamiltonian for the spin state σ as

Ĥσ =

∫
d3rψ̂†

σ (r)
[
H0+gσσ ′M |φσ ′ (r)|2+

gσσ
2
ψ̂†
σ (r)ψ̂σ (r)

]
ψ̂σ (r) (5)

where H0 = (p2/2m)+V (r) is the operator for kinetic and potential energy and
ψ̂σ is the bosonic field operator. The interaction strength between two spin states
σ = |F ,mF 〉 and σ ′ = |F ′,mF ′ 〉 is labelled by gσσ ′ = 4π h̄2aσσ ′/m with an s-wave
scattering length aσσ ′ ≈ 100a0 (a0 is the Bohr radius). For shallow lattices, we
assume that only s- and p-band Bloch functions ϕs,p with quasimomentum q= 0
contribute. For a large total number of particles and weak interactions, we apply
mean-field theory and expand the field operators according to equation (2)

ψ̂σ (r)/
√
N→

√
nsϕs(r)+eiθ

√
npϕp(r) (6)

where ϕs,p are real functions. The energy functional can be divided into
a θ-independent and a θ-dependent part, where the latter is given by
Hθ (np,θ)= vsp+wsp+xsp with

vsp = 2MNVsp
√
nsnpcos(θ)

wsp = 2N 2Wsp nsnpcos(2θ) (7)

xsp = 4N 2 (Xsns+Xpnp
)√

nsnpcos(θ)

These terms depend on the interspecies integral Vsp= gσσ ′
∫
d3r |φσ ′ |2 ϕ∗s ϕp And the

intraspecies integrals Wsp = (gσσ /2)
∫
d3rϕ∗2s ϕ

2
p , Xs = (gσσ /2)

∫
d3r |ϕs|2ϕ∗s ϕp and

Xp = (gσσ /2)
∫
d3r |ϕp|2ϕ∗s ϕp, where the latter two vanish for symmetric spin states

|F ,mF = 0〉 owing to parity. Without loss of generality, we choose the arbitrary sign
of ϕp such that vsp exhibits a minimum for θ = 0 corresponding to Vsp < 0. The
phase boundary of the phase transition between normal and twisted superfluid
phases is defined by

2Wsp
√
np(1−np)=

∣∣∣∣ M2N Vsp+Xs(1−np)+Xpnp

∣∣∣∣ (8)

When approaching the Mott insulator transition, higher-quasimomentum states
become occupied and the two-mode description presented here is no longer fully
valid. This could explain quantitative deviations between theory and experiment.
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