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Optimization hardness as transient chaos in an
analog approach to constraint satisfaction
Mária Ercsey-Ravasz1,2* and Zoltán Toroczkai1,2,3*
Boolean satisfiability1 (k-SAT) is one of the most studied
optimization problems, as an efficient (that is, polynomial-
time) solution to k-SAT (for k ≥ 3) implies efficient solutions
to a large number of hard optimization problems2,3. Here we
propose a mapping of k-SAT into a deterministic continuous-
time dynamical system with a unique correspondence between
its attractors and the k-SAT solution clusters. We show
that beyond a constraint density threshold, the analog
trajectories become transiently chaotic4–7, and the boundaries
between the basins of attraction8 of the solution clusters
become fractal7–9, signalling the appearance of optimization
hardness10. Analytical arguments and simulations indicate that
the system always finds solutions for satisfiable formulae
even in the frozen regimes of random 3-SAT (ref. 11)
and of locked occupation problems12 (considered among the
hardest algorithmic benchmarks), a property partly due to the
system’s hyperbolic4,13 character. The system finds solutions
in polynomial continuous time, however, at the expense of
exponential fluctuations in its energy function.

Boolean satisfiability1 (k-SAT, k ≥ 3) is the quintessential
constraint-satisfaction problem, lying at the basis of many deci-
sion, scheduling, error-correction and computational applications.
k-SAT is inNP (refs 1–3), that is its solutions are efficiently (polyno-
mial time) checkable, but no efficient (polynomial time) algorithms
are known to compute those solutions. If such algorithms would be
found for k-SAT, all NP problems would be efficiently computable,
because k-SAT is NP-complete2,3.

In k-SAT there are given N Boolean variables {x1,...,xN },xi ∈
{0,1} andM clauses (constraints), each clause being the disjunction
(OR, denoted as ∨) of k variables or their negation (x̄). One has
to find an assignment of the variables such that all clauses (called
collectively as a formula) are satisfied (TRUE = ‘1’). When the
number of constraints is small, it is easy to find solutions, whereas
for too many constraints it is easy to decide that the formula is
unsatisfiable (UNSAT). Deciding satisfiability, in the ‘intermediate
range’, however, can be very hard: the worst-case complexity of all
known algorithms for k-SAT is exponential inN .

Inspired by the mechanisms of information processing in
biological systems, analog computing received increasing interest
from both theoretical14–16 and engineering communities17–21.
Although the theoretical possibility of efficient computation using
chaotic dynamical systems has been shown previously15, nonlinear
dynamical systems theory has not been exploited for NP-complete
problems in spite of the fact that, as shown previously19–21, k-SAT
can be formulated as a continuous global optimization problem19,
and even cast as an analog dynamical system20,21.

Here we present a continuous-time dynamical system for k-SAT,
with a dynamics that is rather different from previous approaches.
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Let us introduce the continuous variables19 si ∈ [−1,1], such that
si =−1 if the ith variable (xi) is FALSE and si = 1 if it is TRUE.
We define cmi= 1 for the direct form (xi),cmi=−1 for the negated
form (x̄i) and cmi= 0 for the absence of the ith variable from clause
m. Defining the constraint function Km(s) ≡ 2−k

∏N
i=1 (1− cmisi)

corresponding to clause m, we have Km ∈ [0,1] and Km = 0 if
and only if clause m is satisfied. The goal would be to find a
solution s∗ with s∗i ∈ {−1,1} to E(s∗)= 0, where E is the energy
function E(s)=

∑M
m=1Km(s)2. If such s∗ exists, it will be a global

minimum for E and a solution to the k-SAT problem. However,
finding s∗ by a direct minimization of E(s) will typically fail
owing to non-solution attractors trapping the search dynamics.
To avoid such traps, here we define a modified energy function
V (s,a) =

∑M
m=1 amKm(s)2, using auxiliary variables am ∈ (0,∞)

similar to Lagrange multipliers20,21. Let us denote by HN the
continuous domain [−1,1]N . Its boundary is the N -hypercube
QN =∂HN with vertex set VN ={−1,1}N ⊂QN . The set of solutions
for a given k-SAT formula, called solution space, occupies a
subset of VN . Solution clusters are formed by solutions that can
be connected through single-variable flips, always staying within
satisfying assignments22. Clearly, V ≥ 0 in � ≡ HN × (0,∞)M ,
and V (s,a)= 0 within VN if and only if s= s∗ ∈ VN is a k-SAT
solution, for any a∈ (0,∞)M . We now introduce a continuous-time
dynamical system on� through:

dsi
dt
= (−∇sV (s,a))i=

M∑
m=1

2amcmiKmi(s)Km(s), i= 1,...,N (1a)

dam
dt
= amKm(s), m= 1,...,M (1b)

where ∇s is the gradient operator with respect to s and Kmi =

Km/(1− cmisi). The initial conditions for s are arbitrary s(0)∈HN ;
however, for a they have to be strictly positive, am(0) > 0 (for
example, am(0)=1). The k-SAT solutions s∗∈VN are fixed points of
(1), for any a∈ (0,∞)M . The k-SAT solution clusters are spanning
piecewise compact, connected sets in QN , and every point in them
is a fixed point of (1) (Supplementary Section SA). System (1)
has a number of key properties (see Supplementary Information).
First, the dynamics in s stays confined to HN . Second, the k-SAT
solutions s∗ ∈ VN are attractive fixed points of (1). In particular,
every point s from the orthant of a k-SAT solution s∗ with the
property |s|2≥N −1+ (k−1)2/(k+1)2 is guaranteed to flow into
the attractor corresponding to s∗. Third, there are no limit cycles.
Fourth, for satisfiable formulae the only fixed point attractors of
the dynamics are the global minima of V with V = 0. Note that
in principle, the projection of the dynamics onto HN could be
stuck in some point s̄, while da/dt 6= 0 indefinitely. This does not
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Figure 1 | Chaotic behaviour. a,b, Five, closely started sample trajectories projected onto (s1,s2,s3), for a 3-SAT formula with N= 200, α= 3 (a) and for a
hard formula, N= 200, α=4.25 (b). The colour indicates the energy E (colour bar) in a given point of the trajectory. Whereas for easy formulae the
trajectories exhibit laminar flow, for hard formulae they quickly become separated, showing a chaotic evolution. c,d, Taking a small 3-XORSAT instance
with N= 15 (see Supplementary Section SG) we fix a random initial condition for all si, except s1 and s2, which are varied on a 400×400 grid, and we
colour each point according to the solution they flow to for γ =0.6 (c; instance shown in Supplementary Fig. S4e) and for γ =0.8 (d; instance shown in
Supplementary Fig. S4f).

happen here, as shown in Supplementary Section SE. Moreover,
analytical arguments supported by simulations indicate that the
trajectory will leave any domain that does not contain solutions,
see the discussion in Supplementary Section SE1. Note that the
constraint functions (hence their satisfiability) depend directly only
on the location of the trajectory in HN , Km=Km(s), and not on the
auxiliary variables. The dynamics in the a-space is simple expansion,
and for this reason the features of the full phase space � lie within
its projection onto HN . One can actually eliminate entirely the
auxiliary variables from the equations by first solving (1b) to give
am(t )=am(0)exp(

∫ t
0 Km(s(τ ))dτ ) and then inserting it into (1a).

Another fundamental feature of (1) is that it is deterministic:
for a given formula f , any initial condition generates a unique
trajectory, and any set from HN has a unique pre-image arbitrarily
back in time. Hence, the characteristics of the solution space are
reflected in the properties of the invariant sets7 of the dynamics (1)
within the hypercube HN . The deterministic nature of (1) allows
us to define basins of attractions of solution clusters by colouring
every point in HN according to which cluster the trajectory flows
to, if started from there. These basins fill HN up to a set of
zero (Lebesgue) measure, which forms the basin boundary7, from
where the dynamics (by definition) cannot flow to any of the

attractors. A k-SAT formula f can be represented as a hypergraph
G(f ) (or equivalently, a factor graph) in which nodes are variables
and hyperedges are clauses connecting the nodes/variables in the
clause. Pure literals are those that participate in one or more
clauses but always in the same form (direct or negated); hence,
they can always be chosen such as to satisfy those clauses. The
core of G(f ) is the subgraph left after sequentially removing all of
the hyperedges having pure literals23. For simple formulae (such
as those without a core), the dynamics of (1) is laminar flow
and the basin boundaries form smooth, non-fractal sets (Figs 1a,c
and 2, top two rows). Adding more constraints G(f ) develops a
core, the spin equations (1a) become mutually coupled, and the
trajectories may become chaotic (Fig. 1b, Supplementary Section
SF and Fig. S8) and the basin boundaries fractal7–9 (Figs 1d, 2
and Supplementary Fig. S4). Therefore, as the constraint density
α =M/N is increased within predefined ensembles of formulae
(random k-SAT, occupation problems, k-XORSAT and so on) a
sharp change to chaotic behaviour is expected at a chaotic transition
point αχ , where a chaotic core appears with non-zero statistical
weight in the ensemble as N→∞. As an example, let us consider
3-XORSAT. In this case, owing to its inherently linear nature, it is
actually better to work directly with the parity check equations as
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Figure 2 |Attractor basins. For a random 3-SAT instance with N= 50 we
vary α by successively adding new constraints. Fixing a random initial
condition for si,i≥ 3, we vary only s1 and s2 on a 400×400 grid, and we
colour each point according to the solution (first column) or solution cluster
(second column) they flow to. Each colour in a given column represents a
solution or solution cluster respectively; however, colours between columns
are independent. The third column represents the analog search time t
needed to find a solution (see colour bar) starting from the corresponding
grid point. Maps are presented for values of α= 3.5, 3.7, 3.9, 4.1, 4.16, 4.2
and 4.24. Easy formulae are characterized by smooth basin boundaries and
small search times. Note that we see only the solutions (and clusters) that
reveal themselves in the (s1,s2) plane; others might not be seen. For hard
formulae the boundaries and the search time maps become fractal.

constraints, instead of their conjunctive normal form. The chaotic
core here is a small finite hypergraph, and thusαχ coincides with the
so-called dynamical transition point αd computed exactly in ref. 24
(see Supplementary Section SG and Fig. S4). Note, a core can be
non-chaotic, and thus the existence of a core is only a necessary
condition for the appearance of chaos and in general the two
transitions might not coincide. Further increasing the number of
constraints (within any formula ensemble) unsatisfiability appears
at the threshold value αs > αχ beyond which almost all formulae
are unsatisfiable (UNSAT regime)11,12,22,24–28. The closer α is to
αs, the harder it is to find solutions, and beyond the so-called
freezing transition point αf < αs (called the frozen regime) all
known algorithms take exponentially long times or simply fail to
find solutions11,12. A variable is frozen if it takes on the same value
for all solutions within a cluster, and a cluster is frozen if an
extensive number of its variables are frozen. In the frozen regime
all clusters are frozen and they are also far apart (O(N ) Hamming
distance)11,12. For random 3-SAT (clauses chosen uniformly at
random for fixed α) αs ∼= 4.26 (ref. 27), αf ∼= 4.25 (ref. 28) and all
known local search algorithms become exponential or fail beyond
α= 4.21 (ref. 29), and survey-propagation25-based algorithms fail
beyond α = 4.25 (ref. 28). As the frozen regime is very thin in
random 3-SAT, the so-called locked occupation problems (LOPs)
have been introduced12. In LOPs all clusters are formed by exactly
one solution; hence, they are completely frozen and the frozen
regime extends from the clustering (dynamical) transition point
`d to the satisfiability threshold `s, and thus it is very wide12.
An example LOP is random ‘+1-in-3-SAT’ (ref. 12), made of
constraints that have no negated variables and a constraint is
satisfied only if exactly one of its variables is 1 (TRUE). In +1-in-3-
SAT `d∼=2.256, `s∼=2.368 and beyond `d all known algorithms have
exponential search times or fail to find solutions (here `=3M/N ).

As chaos is present for satisfiable formulae, that is, when system
(1) has attracting fixed points, it is necessarily of transient type.
Transient chaos4–7 is ubiquitous in systems with many degrees
of freedom such as fluid turbulence30. It appears as the result of
homoclinic/heteroclinic intersections of the invariant manifolds of
hyperbolic (unstable) fixed points of (1) lying within the basin
boundary7–9, leading to complex (fractal) foliations of the phase
space (see Supplementary Section SF). We observed the prevalence
of transient chaos in the whole region αχ < α < αs for all of the
problem classes we studied. Interestingly, the velocity fluctuations
of trajectories in the chaotic regime are qualitatively similar to
those of fluid parcels in turbulent flows as shown in Supplementary
Section SK. Our findings indicate that chaotic behaviour may
be a generic feature of algorithms searching for solutions in
hard optimization problems, corroborating previous observations10
using a heuristic algorithm based on iteratedmaps.

In the following we show results on random 3-SAT and
+1-in-3-SAT formulae in the frozen regime; however, the same
conclusions hold for other ensembles that we tested. To investigate
the complexity of computation by the flow (1), we monitored
the fraction of problems p(t ) not solved by continuous time t ,
as a function of N and α. Figure 3a,c shows that even in the
frozen phase, the fraction of unsolved problems by time t decays
exponentially with t , that is, by a law p(t )= re−λ(N )t . The decay rate
λ(N ) obeys λ(N )= bN−β , with β ≈ 1.6 in both cases, see Fig. 3b,d.
From these two equations, the continuous time t (p,N ) needed to
solve a fixed (1− p)th fraction of random formulae (or to miss
solving the pth fraction of them) is:

t (p,N )= b−1N β ln(r/p) (2)

indicating that the continuous time needed to find solutions scales
as a power law withN . Equation (2) also implies power-law scaling
for almost all hard instances in the N→∞ limit (Supplementary
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Figure 3 | Computational complexity properties. a, The fraction of problems p(t) not yet solved by continuous time t for 3-SAT at α=4.25, for N= 20, 30,
40, 50, 60, 80, 100, 125 and 150 (colours). Averages were done over 105 instances for each N. For each instance the dynamics was started from one
random initial condition. Black continuous lines show the decay p(t)= rexp(−λ(N)t). b, The decay rate follows λ(N)= bN−β , with β ≈ 1.66. c, The fraction
of problems p(t) unsolved by time t for +1-in-3-SAT at l=2.34, for N=20, 25, 30, 35, 40, 50, 60, 70 and 80. For each instance the dynamics was started in
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Section SH). The length in HN of the corresponding continuous
trajectories also scales as a power law with N (Supplementary
Fig. S7b and Section SJ). However, note that this does not
mean that the algorithm itself is a polynomial-cost algorithm, as
the energy function V can have exponentially large fluctuations.
As the numerical integration happens on a digital machine,
it approximates the continuous trajectory with discrete points.

Monitoring the fraction of formulae left unsolved as a function
of the number of discretization steps nstep in the frozen phase, we
find exponential behaviour for nstep(p,N ) (Supplementary Sections
SI, SJ and Fig. S6). The difference between the continuous- and
discrete-time complexities is due to the wildly fluctuating nature
of the chaotic trajectories (see Fig. 1b and Methods) in the frozen
phase. Compounding this, we also observe the appearance of the
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Wada property7,8 in the basin boundaries (Fig. 4). A fractal basin
boundary hasWada property if its points are simultaneously on the
boundary of at least three colours/basins. (An amusingmethod that
creates such sets uses four Christmas ball ornaments7.) Although
the Wada property does not affect the true/mathematical analog
trajectories, owing to numerical errors, it may switch the numerical
trajectories between the basins. As the clusters are far (O(N ))
apart, the switched trajectory will flow towards another cluster
into a practically opposing region of HN until it may come close
again to the basin boundary and so on, partially randomizing
the trajectory in HN .

We conjecture that the power-law scaling of the continuous
search times (2) is due in part to a generic property of the dynamical
system (1), namely that it is hyperbolic4,6,13 or near-hyperbolic. It
has been shown that for hyperbolic systems the trajectories escape
from regions far away from the attractors to the attractors at an ex-
ponential rate, for almost all initial conditions4,6,13. That is, the frac-
tion of trajectories still searching for a solution after time t decays
as e−κt (Supplementary Fig. S9), where κ is the escape rate. Thus,
κ−1 can be considered as a measure of hardness for a given formula.
When taken over an ensemble at a given α, this property generates
the exponential decay for p(t ) with an average escape rate λ.

The form of the energy function V incorporates the influence of
all of the clauses at all times, and in this sense (1) is a non-local
search algorithm. As shown before, the auxiliary variables can
be eliminated; however, they give a convenient interpretation of
the dynamics. Namely, one can think of them as providing extra
dimensions along which the trajectories escape from local wells,
and their form (1b) provides positive feedback that guarantees their
escape. Clearly, these equations are not unique, and other forms
based on the same principles may work just as well.

Methods
To simulate (1), we use a fifth-order adaptive Cash–Karp Runge–Kutta method
with monitoring of local truncation error to ensure accuracy. To keep the
numerical trajectory within a tube of small, preset thickness around the true analog
trajectory in � (Supplementary Fig. S5), the Runge–Kutta algorithm occasionally
carries out an exponentially large number of discretization steps nstep. However,
this happens only for hard formulae, when the analog trajectory has wild, chaotic
fluctuations. For easy formulae, both p(t ) and p(nstep) decay exponentially as
shown in Supplementary Fig. S6a, inset.
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