Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bilayer manganites reveal polarons in the midst of a metallic breakdown

Abstract

The origin of colossal magnetoresistance (CMR) in manganese oxides is among the most challenging problems in condensed-matter physics today. The true nature of the low-temperature electronic phase of these materials is heavily debated. By combining photoemission and tunnelling data, we show that in the archetypal bilayer system La2−2xSr1+2xMn2O7, polaronic degrees of freedom win out across the CMR region of the phase diagram. This means that the generic ground state of bilayer manganites supports a vanishing coherent quasi-particle spectral weight at the Fermi level throughout k-space. The incoherence of the charge carriers, resulting from strong electron–lattice interactions and the accompanying orbital physics, offers a unifying explanation for the anomalous charge-carrier dynamics seen in transport, optics and electron spectroscopies. The stacking number N is the key factor for true metallic behaviour, as an intergrowth-driven breakdown of the polaronic domination to give a metal possessing a traditional Fermi surface is seen in this system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STM/S on bilayer manganites (T=4.2 K).
Figure 2: Spatial ARPES mapping of bilayer LSMO.

References

  1. Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413–415 (1994).

    Article  ADS  Google Scholar 

  2. Şen, C., Alvarez, G. & Dagotto, E. Competing ferromagnetic and charge-ordered states in models for manganites: The origin of the colossal magnetoresistance effect. Phys. Rev. Lett. 98, 127202 (2007).

    Article  ADS  Google Scholar 

  3. Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 . Phys. Rev. 100, 564–573 (1955).

    Article  ADS  Google Scholar 

  4. Kimura, T. & Tokura, Y. Layered magnetic manganites. Annu. Rev. Mater. Sci. 30, 451–474 (2000).

    Article  ADS  Google Scholar 

  5. Urushibara, A. et al. Insulator–metal transition and giant magnetoresistance in La1−x Sr x MnO3 . Phys. Rev. B 51, 14103–14109 (1995).

    Article  ADS  Google Scholar 

  6. Moritomo, Y., Asamitsu, A., Kuwahara, H. & Tokura, Y. Giant magnetoresistance of manganese oxides with a layered perovskite structure. Nature 380, 141–144 (1996).

    Article  ADS  Google Scholar 

  7. Perring, T. G., Aeppli, G., Moritomo, Y. & Tokura, Y. Antiferromagnetic short range order in a two-dimensional manganite exhibiting giant magnetoresistance. Phys. Rev. Lett. 16, 3197–3200 (1997).

    Article  ADS  Google Scholar 

  8. Moritomo, Y., Tomioka, Y., Asamitsu, A., Tokura, Y. & Matsui, Y. Magnetic and electronic properties in hole-doped manganese oxides with layered structures: La1−x Sr1+x MnO4 . Phys. Rev. B 51, 3297–3300 (1995).

    Article  ADS  Google Scholar 

  9. Vasiliu-Doloc, L. et al. Charge melting and polaron collapse in La1.2Sr1.8Mn2O7 . Phys. Rev. Lett. 83, 4393–4396 (1999).

    Article  ADS  Google Scholar 

  10. Campbell, B. J. et al. Structure of nanoscale polaron correlations in La1.2Sr1.8Mn2O7 . Phys. Rev. B 65, 014427 (2001).

    Article  ADS  Google Scholar 

  11. Mannella, N. et al. Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites. Nature 438, 474–478 (2005).

    Article  ADS  Google Scholar 

  12. Mannella, N. et al. Temperature-dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La1−x Sr x MnO3 . Phys. Rev. B 76, 233102 (2007).

    Article  ADS  Google Scholar 

  13. Sun, Z. et al. Quasiparticlelike peaks, kinks, and electron–phonon coupling at the (π,0) regions in the CMR oxide La2−2x Sr1+2x Mn2O7 . Phys. Rev. Lett. 97, 056401 (2006).

    Article  ADS  Google Scholar 

  14. Sun, Z. et al. A local metallic state in globally insulating La1.24Sr1.76Mn2O7 well above the metal–insulator transition. Nature Phys. 3, 248–252 (2007).

    Article  ADS  Google Scholar 

  15. de Jong, S. et al. Quasiparticles and anomalous temperature dependence of the low-lying states in the colossal magnetoresistant oxide La2−2x Sr1+2x Mn2O7 (x=0.36) from angle-resolved photoemission. Phys. Rev. B 76, 235117 (2007).

    Article  ADS  Google Scholar 

  16. Rønnow, H. M., Renner, Ch., Aeppli, G., Kimura, T. & Tokura, Y. Polarons and confinement of electronic motion to two dimensions in a layered manganite. Nature 440, 1025–1028 (2006).

    Article  ADS  Google Scholar 

  17. de Santis, S. et al. Imaging of polarons in ferromagnetic bilayered manganites by scanning tunnelling microscopy. J. Supercond. Nov. Magn. 20, 531–533 (2007).

    Article  Google Scholar 

  18. Weber, F. et al. Signature of checkerboard fluctuations in the phonon spectra of a possible polaronic metal La1.2Sr1.8Mn2O7 . Nature Mater. 8, 798–802 (2009).

    Article  ADS  Google Scholar 

  19. Bryant, B., Renner, Ch., Tokunaga, Y., Tokura, Y. & Aeppli, G. Imaging oxygen defects and their motion at a manganite surface. Nature Commun. 2, 212 (2011).

    Article  ADS  Google Scholar 

  20. Evtushinsky, D. V. et al. Bridging charge-orbital ordering and Fermi surface instabilities in half-doped single-layered manganite La0.5Sr1.5MnO4 . Phys. Rev. Lett. 105, 147201 (2010).

    Article  ADS  Google Scholar 

  21. Allodi, G. et al. Magnetic order in the double-layer manganites (La1−x Pr z )1.2Sr1.8Mn2O7: Intrinsic properties and role of intergrowth. Phys. Rev. B 78, 064420 (2008).

    Article  ADS  Google Scholar 

  22. Potter, C. D. et al. Two-dimensional intrinsic and extrinsic ferromagnetic behavior of layered La1.2Sr1.8Mn2O7 single crystals. Phys. Rev. B 57, 72–75 (1998).

    Article  ADS  Google Scholar 

  23. Bader, S. D., Osgood, R. M., Miller, D. J., Mitchell, J. F. & Jiang, J. S. Role of intergrowths in the properties of naturally layered manganite single crystals (invited). J. Appl. Phys. 83, 6385–6389 (1998).

    Article  ADS  Google Scholar 

  24. Seshadri, R. et al. Study of the layered magnetoresistive perovskite La1.2Sr1.8Mn2O7 by high-resolution electron microscopy and synchrotron x-ray powder diffraction. Chem. Mater. 9, 1778–1787 (1997).

    Article  Google Scholar 

  25. Sloan, J., Battle, P. D., Green, M. A., Rosseinsky, M. J. & Vente, J. F. A HRTEM study of the Ruddlesden–Popper compositions Sr2 LnMn2O7 (Ln=Y, La, Nd, Eu, Ho). J. Solid State Chem. 138, 135–140 (1998).

    Article  ADS  Google Scholar 

  26. Chudnovskii, F. A. The minimum conductivity and electron localisation in the metallic phase of transition metal compounds in the vicinity of a metal-insulator transition. J. Phys. C 11, L99–L102 (1978).

    Article  ADS  Google Scholar 

  27. Mott, N. F. Metal–Insulator Transitions (Taylor and Francis, 1974).

    Google Scholar 

  28. Ishikawa, T., Tobe, K., Kimura, T., Katsufuji, T. & Tokura, Y. Optical study on the doping and temperature dependence of the anisotropic electronic structure in bilayered manganites, La2−2x Sr1+2x Mn2O7 (0.3≤x≤0.5). Phys. Rev. B 62, 12354–12362 (2000).

    Article  ADS  Google Scholar 

  29. Takahashi, K., Kida, N. & Tonouchi, M. Optical evidence of a pseudogap in the ferromagnetic metallic phase of the bilayered manganite. J. Magn. Magn. Mater. 272, E669–E670 (2004).

    Article  ADS  Google Scholar 

  30. Okimoto, Y., Katsufuji, T., Ishikawa, T., Arima, T. & Tokura, Y. Variation of electronic structure in La1−x Sr x MnO3 (0≤x≤0.3) as investigated by optical conductivity spectra. Phys. Rev. B 55, 4206–4214 (1997).

    Article  ADS  Google Scholar 

  31. Kimura, T. et al. Interplane tunneling magnetoresistance in a layered manganite crystal. Science 274, 1698–1701 (1996).

    Article  ADS  Google Scholar 

  32. Li, Q. A. et al. Reentrant orbital order and the true ground state of LaSr2Mn2O7 . Phys. Rev. Lett. 98, 167201 (2007).

    Article  ADS  Google Scholar 

  33. Zheng, H., Li, Q., Gray, K. E. & Mitchell, J. F. Charge and orbital ordered phases of La2−2x Sr1+2x Mn2O7−δ . Phys. Rev. B 78, 155103 (2008).

    Article  ADS  Google Scholar 

  34. Sun, Z. et al. Electronic structure of the metallic ground state of La2−2x Sr1+2x Mn2O7 for x=0.59 and comparison with x=0.36, 0.38 compounds as revealed by ARPES. Phys. Rev. B 78, 075101 (2008).

    Article  ADS  Google Scholar 

  35. Chuang, Y-D., Gromko, A. D., Dessau, D. S., Kimura, T. & Tokura, Y. Fermi surface nesting and nanoscale fluctuating charge/orbital ordering in colossal magnetoresistive oxides. Science 25, 1509–1513 (2001).

    Article  ADS  Google Scholar 

  36. Kubota, M., Onoa, K. & Yoshida, T. Electronic structure of layered manganite La1.1Sr1.9Mn2O7 studied by angle-resolved photoemission spectroscopy at low temperatures. J. Electron Spectrosc. Relat. Phenom. 156-158, 398–400 (2007).

    Article  Google Scholar 

  37. Freeland, J. W. et al. Suppressed magnetization at the surfaces and interfaces of ferromagnetic metallic manganites. J. Phys. Condens. Matter 19, 315210 (2007).

    Article  Google Scholar 

  38. Freeland, J. W. et al. Full bulk spin polarization and intrinsic tunnel barriers at the surface of layered manganites. Nature Mater. 4, 62–67 (2005).

    Article  ADS  Google Scholar 

  39. Nascimento, V. B. et al. Surface-stabilized nonferromagnetic ordering of a layered ferromagnetic manganite. Phys. Rev. Lett. 103, 227201 (2009).

    Article  ADS  Google Scholar 

  40. de Jong, S. et al. High-resolution hard x-ray photoemission investigation of La2−2x Sr1+2x Mn2O7 (0.30<x<0.50): Microscopic phase separation and surface electronic structure of a bilayer colossal magnetoresistance manganite. Phys. Rev. B 80, 205108 (2009).

    Article  ADS  Google Scholar 

  41. van den Brink, J., Horsch, P. & Oleś, A. M. Photoemission spectra of LaMnO3 controlled by orbital excitations. Phys. Rev. Lett. 85, 5174–5177 (2000).

    Article  ADS  Google Scholar 

  42. Bała, J., Sawatzky, G. A., Oleś, A. M. & Macridin, A. Quantum decoherence in the spectral function of undoped LaMnO3 . Phys. Rev. Lett. 87, 067204 (2001).

    Article  ADS  Google Scholar 

  43. Bała, J., Oleś, A. M. & Horsch, P. Quasiparticles and the structure of orbital polarons in ferromagnetic LaMnO3 . Phys. Rev. B 65, 134420 (2002).

    Article  ADS  Google Scholar 

  44. Daoud-Aladine, A., Rodríguez-Carvajal, J., Pinsard-Gaudart, L., Fernández-Díaz, M. T. & Revcolevschi, A. Zener polaron ordering in half-doped manganites. Phys. Rev. Lett. 89, 097205 (2002).

    Article  ADS  Google Scholar 

  45. Daoud-Aladine, A., Perca, C., Pinsard-Gaudart, L. & Rodríguez-Carvajal, J. Zener polaron ordering variants induced by A-site ordering in half-doped manganites. Phys. Rev. Lett. 101, 166404 (2008).

    Article  ADS  Google Scholar 

  46. Wohlfeld, K., Oleś, A. M. & Horsch, P. Orbitally induced string formation in the spin-orbital polarons. Phys. Rev. B 79, 224433 (2009).

    Article  ADS  Google Scholar 

  47. May, S. J. et al. Enhanced ordering temperatures in antiferromagnetic manganite superlattices. Nature Mater. 8, 892–897 (2009).

    Article  ADS  Google Scholar 

  48. Huang, X. Y., Mryasov, O. N., Novikov, D. L. & Freeman, A. J. Electronic and magnetic properties of layered colossal magnetoresistive oxides: La1+2x Sr2−2x Mn2O7 . Phys. Rev. B 62, 13318–13322 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Huisman and M. Gobbi for help with ARPES and STM data acquisition, F. D. Tichelaar and H. Zandbergen for TEM investigations, H. Luigjes, H. Schlatter and J. S. Agema for valuable technical support and the IFW Dresden ARPES group for access to the SES100 end-station. We are grateful to N. Mannella, G. A. Sawatzky, A. J. Millis, P. Littlewood, E. van Heumen and J. Zaanen for useful discussions. This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Contributions

F.M. and S.d.J. contributed equally to this work. M.S.G., J.B.G., S.d.J. and F.M. designed the experiments. Y.H., D.P. and A.T.B. grew the crystals. F.M., S.d.J., Y.H., W.K.S., I.S., A.M. and M.S.G. carried out the experiments. R.F., A.V., L.P. and M.S. provided photons and assistance during the synchrotron beamtimes. S.d.J and F.M. carried out the data analysis. S.d.J., F.M., J.B.G. and M.S.G. interpreted the results and wrote the paper, with feedback from co-authors.

Corresponding author

Correspondence to M. S. Golden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5899 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massee, F., de Jong, S., Huang, Y. et al. Bilayer manganites reveal polarons in the midst of a metallic breakdown. Nature Phys 7, 978–982 (2011). https://doi.org/10.1038/nphys2089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2089

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing