Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancement of superconductivity by a parallel magnetic field in two-dimensional superconductors

Abstract

Superconductivity is a quantum state of matter characterized by the formation of Cooper pairs from time-reversal-symmetric electronic states. Mechanisms that break this symmetry, such as magnetic-impurity scattering and applied magnetic fields, are expected to be detrimental to superconductivity and suppress the critical temperature. Here, we report the observation of pronounced increases in the mean-field critical temperature on application of a parallel magnetic field in two different two-dimensional superconducting systems: ultrathin, homogeneously disordered amorphous Pb films and the two-dimensional electron gas at the interface of LaAlO3 and SrTiO3. In the amorphous Pb films, the critical-temperature increases exhibit a systematic dependence on the film thickness. Significantly, the presence of paramagnetic impurities in the films diminishes the effect of field enhancement of superconductivity. These observations mark a radical departure from the current understanding of the interactions between magnetic fields and superconductivity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enhancement of superconductivity by a parallel magnetic field in ultrathin amorphous Pb films.
Figure 2: Thickness dependence of the field enhancement of superconductivity in Pb films.
Figure 3: Field enhancement of superconductivity in LaAlO3/SrTiO3 heterostructure.
Figure 4: Effect of paramagnetic impurity on the field enhancement of superconductivity in a-Pb films.
Figure 5: Summary of effect of paramagnetic impurity on field-enhanced superconductivity in a-Pb films.

Similar content being viewed by others

References

  1. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  2. Abrikosov, A. A. & Gor’kov, L. P. Contribution to the theory of superconducting alloys with paramagnetic impurities. J. Exp. Theor. Phys. 12, 1243–1253 (1961).

    Google Scholar 

  3. Maki, K. Effect of Pauli paramagnetism on magnetic properties of high-field superconductors. Phys. Rev. 148, 362–369 (1966).

    Article  ADS  Google Scholar 

  4. Seguchi, Y., Tsuboi, T. & Suzuki, T. Magnetic-field-enhanced superconductivity in Au/Ge layered films. J. Phys. Soc. Jpn. 61, 1875–1878 (1992).

    Article  ADS  Google Scholar 

  5. Seguchi, Y., Tsuboi, T. & Suzuki, T. Magnetic-field-enhanced superconductivity in alloy-films of Au–Ge. J. Phys. Soc. Jpn. 62, 2564–2567 (1993).

    Article  ADS  Google Scholar 

  6. Xiong, P., Herzog, A. & Dynes, R. C. Negative magnetoresistance in homogeneous amorphous superconducting Pb wires. Phys. Rev. Lett. 78, 927–930 (1997).

    Article  ADS  Google Scholar 

  7. Rogachev, A. et al. Magnetic-field enhancement of superconductivity in ultranarrow wires. Phys. Rev. Lett. 97, 137001 (2006).

    Article  ADS  Google Scholar 

  8. Parendo, K. A., Hernandez, L. M., Bhattacharya, A. & Goldman, A. M. Anomalous parallel-field negative magnetoresistance in ultrathin films near the superconductor–insulator transition. Phys. Rev. B 70, 212510 (2004).

    Article  ADS  Google Scholar 

  9. Kharitonov, M. Y. & Feigel’man, M. V. Enhancement of superconductivity in disordered films by a parallel magnetic field. JETP Lett. 82, 421–425 (2005).

    Article  ADS  Google Scholar 

  10. Wei, T-C., Pekker, D., Rogachev, A., Bezryadin, A. & Goldbart, P. M. Enhancing superconductivity: Magnetic impurities and their quenching by magnetic fields. Europhys. Lett. 75, 943–949 (2006).

    Article  ADS  Google Scholar 

  11. Ohtomo, A. & Hwang, H. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  ADS  Google Scholar 

  12. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    Article  ADS  Google Scholar 

  13. Parker, J. S., Read, D. E., Kumar, A. & Xiong, P. Superconducting quantum phase transitions tuned by magnetic impurity and magnetic field in ultrathin a-Pb films. Europhys. Lett. 75, 950–956 (2006).

    Article  ADS  Google Scholar 

  14. Koster, G., Kropman, B. L., Rijnders, G. J. H. M., Blank, D. H. A. & Rogalla, H. Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett. 73, 2920–2922 (1998).

    Article  ADS  Google Scholar 

  15. Eckstein, J. N. Oxide interfaces—watch out for the lack of oxygen. Nature Mater. 6, 473–474 (2007).

    Article  ADS  Google Scholar 

  16. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).

    Article  ADS  Google Scholar 

  17. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    Article  ADS  Google Scholar 

  18. Fu, H. C., Seidel, A., Clarke, J. & Lee, D-H. Stabilizing superconductivity in nanowires by coupling to dissipative environments. Phys. Rev. Lett. 96, 157005 (2006).

    Article  ADS  Google Scholar 

  19. Vodolazov, D. Y. Negative magnetoresistance and phase slip process in superconducting nanowires. Phys. Rev. B 75, 184517 (2007).

    Article  ADS  Google Scholar 

  20. Dubi, Y., Biswas, R. R. & Balatsky, A. V. Phase fluctuations in finite thickness disordered superconducting thin films. Available at http://arxiv.org/abs/1002.4203v1 (2010).

  21. Jaccarino, V. & Peter, M. Ultra-high-field superconductivity. Phys. Rev. Lett. 9, 290–292 (1962).

    Article  ADS  Google Scholar 

  22. Meul, H. W. et al. Observation of magnetic-field-induced superconductivity. Phys. Rev. Lett. 53, 497–500 (1984).

    Article  ADS  Google Scholar 

  23. Balicas, L. et al. Superconductivity in an organic insulator at very high magnetic fields. Phys. Rev. Lett. 87, 067002 (2001).

    Article  ADS  Google Scholar 

  24. Kogan, V. G. & Nakagawa, N. Critical-temperature enhancement in thin superconducting films due to field-dependence of the coherence length. Phys. Rev. B 35, 1700–1707 (1987).

    Article  ADS  Google Scholar 

  25. de Gennes, P. G. Superconductivity of Metals and Alloys (Benjamin, 1966).

    MATH  Google Scholar 

  26. Kogan, V. G. & Zhelezina, N. V. Field dependence of the vortex core size. Phys. Rev. B 71, 134505 (2005).

    Article  ADS  Google Scholar 

  27. Scotto, P. & Pesch, W. On the theory of critical fields of superconducting films. J. Low Temp. Phys. 84, 301–320 (1991).

    Article  ADS  Google Scholar 

  28. Hara, J. & Nagai, K. Superconducting transition-temperature of thin-films in magnetic-field. J. Phys. Soc. Jpn. 63, 2331–2336 (1994).

    Article  ADS  Google Scholar 

  29. Tedrow, P. M. & Meservey, R. Spin-polarized electron-tunneling. Phys. Rep. 283, 173–243 (1994).

    Google Scholar 

  30. Caviglia, A. D. et al. Tunable Rashba spin–orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).

    Article  ADS  Google Scholar 

  31. Mineev, V. P. & Samokhin, K. V. Helicoidal phases in superconductors. J. Exp. Theor. Phys. 105, 747–763 (1994).

    Google Scholar 

  32. Agterberg, D. F. Novel magnetic field effects in unconventional superconductors. Physica C 387, 13–16 (2003).

    Article  ADS  Google Scholar 

  33. Samokhin, K. V. Magnetic properties of superconductors with strong spin–orbit coupling. Phys. Rev. B 70, 104521 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. Paetel and C. Richter for their help in processing the LaAlO3/SrTiO3 samples, and acknowledge discussions with R. C. Dynes, Y. Dubi, L. P. Gor’kov, J. Mannhart, P. Schlottmann and S. von Molnár. O.V. was supported in part by a National Science Foundation CAREER award under grant no DMR-0955561.

Author information

Authors and Affiliations

Authors

Contributions

H.J.G., A.K. and L.Y. made the measurements on the a-Pb films. H.J.G. and L.Y. made the measurements on the LaAlO3/SrTiO3 sample. M.P.W. and D.G.S. prepared the LaAlO3/SrTiO3 sample. L.W. and O.V. provided theoretical guidance. P.X. and H.J.G. prepared the manuscript and all authors commented on the manuscript. P.X. supervised the project.

Corresponding author

Correspondence to Peng Xiong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 699 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeffrey Gardner, H., Kumar, A., Yu, L. et al. Enhancement of superconductivity by a parallel magnetic field in two-dimensional superconductors. Nature Phys 7, 895–900 (2011). https://doi.org/10.1038/nphys2075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2075

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing