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thesis

Differentiating the discontinuous
Perhaps nothing in mathematics is more 
useful for physics, chemistry, biology and 
engineering than differential equations. Isaac 
Newton had to invent calculus so he could 
write down the first such equation — for 
planetary motion under the influence of 
gravity. Today, few phenomena fully escape 
the descriptive reach of a generalized form 
of Newton’s recipe: set the rates of change of 
key variables (the left side of the equation) 
equal to some continuous functions of those 
same variables (on the right).

This recipe is an assertion of 
determinism, as the current state of the 
system fixes what happens next, although 
continuity and determinism in the equations 
do not guarantee smooth or predictable 
outcomes. Smooth fluid flows routinely 
develop shock waves, for example, where 
the flow becomes discontinuous — velocity 
or pressure changing sharply over a 
microscopic distance. Dynamical chaos 
destroys long-term predictability even while 
preserving strict determinism.

But our familiarity with these 
phenomena — and satisfaction that 
continuous mathematics is able to describe 
how they emerge — could well blind us to a 
wider world of possibilities. A half century 
ago, a mathematician named A. F. Filippov 
wrote an odd paper entitled Differential 
Equations with Discontinuous Right-hand 
Sides, exploring what might happen if 
the coefficients appearing in differential 
equations aren’t always smooth, but instead 
jump from one value to another abruptly. 
Filippov’s work seems to be known to only a 
narrow group of applied mathematicians, but 
it may hold some big implications for science.

Differential equations normally involve 
continuous functions because small changes 
in a system’s current state generally cause 
equally small changes in its dynamics. But 
think of a superconducting sample initially 
cooled well below the superconducting 
transition temperature TC, and then left to 
gradually warm up. The equations for its 
evolution would involve coefficients for 
thermal conductivities and other properties 
having one set of values for T < TC and 
another for T > TC. Equations of this kind 
also arise naturally in models of biological 
processes or electrical control circuits.

In his early analysis, Filippov suggested 
that discontinuities would have their most 
interesting consequences in situations 
where a system’s dynamics (away from 
the discontinuity) act automatically to 

bring the discontinuity into play. Take 
the superconductor example again. If the 
equations for T > TC drive the temperature 
down towards the discontinuity at T = TC, 
whereas the equations operating for 
T < TC drive the temperature upwards, 
then the discontinuity acts as a kind of 
trapping surface. 

Mathematician Mike Jeffrey has now taken 
Filippov’s analysis several steps further, and 
shows that it predicts two interesting effects. 
One is an abrupt kind of bifurcation in which 
regular system behaviour — a stable cycle, for 
example — may suddenly disappear, with no 
prior warning. The second, more provocative 
effect is the appearance of an explosive kind 
of what Jeffrey calls “non-deterministic 
chaos” — a scenario in which a discontinuity 
can make an apparently deterministic system 
suddenly begin behaving quite randomly.

The first effect Jeffrey refers to as a 
‘grazing’ bifurcation — it’s a sharp change 
in system dynamics brought about when a 
trajectory just happens to graze up against 
the discontinuity. Again, consider the 
superconductor. This sample (as part of 
a larger system) might exhibit a cyclical 
behaviour, its temperature rising and falling 
repeatedly, yet always remaining above TC. If 
slow changes in system parameters gradually 
decrease the temperature on this cycle, its 
lowest value will eventually just barely reach 
TC, in which case the system trajectory grazes 
against the surface of the discontinuity.

Think of an aeroplane doing loop-the-
loops over a muddy field, gradually losing 
altitude, until finally making disastrous 
grazing contact with the sticky surface. The 
plane sticks to the ground and its cycling is 
suddenly finished. Similarly, the grazing at 
T = TC means that the equations for T > TC 
no longer apply, and the system may do 
something surprising.

Earlier experiments have actually shown 
that such bifurcations happen in a real 
system — a ring of the superconductor 
niobium nitride. The electrical current 
in this ring, and its temperature, change 
according to two simple differential equations 

containing coefficients that change abruptly 
if the temperature passes through the 
superconducting transition temperature. If 
its temperature descends to the discontinuity, 
this system — which seems to be fully 
deterministic — suddenly begins flipping 
randomly between periods of regular 
oscillations interrupted by intervals of stasis.

But these bifurcations are quite mundane 
compared with a more spectacular possibility. 
As Jeffrey points out, grazing bifurcations 
require rather special circumstances — the 
system has to get on just the right trajectory 
to graze the discontinuity at a special point. 
This can happen, as the experiments attest, 
but may not be likely. However, Jeffrey has 
shown that in higher-dimensional systems — 
those having three or more independent 
variables — there should naturally arise 
situations in which the special conditions for 
the grazing are automatically satisfied.

The mathematics here gets fairly subtle, 
but the idea is relatively simple — that a 
discontinuity in higher dimensions may itself 
act to trap and focus system trajectories, 
forcing them to pass through the grazing 
point. This situation is what dynamical-
systems theorists call ‘generic’ — it happens 
without any special tuning, and so should be 
seen routinely in practice. Any system of this 
kind, on being forced through the grazing 
point, will exhibit truly random dynamics. 
In effect, on reaching this point the ordinary 
equations for the system temporarily lose 
control, and microscopic noise then exerts a 
strong influence over the future, at least over 
a short interval.

The biggest question is how common 
the non-deterministic chaos resulting from 
situations may be. Perhaps, for reasons yet 
unknown, it is something that rarely happens 
in real systems. Or maybe it hasn’t been noted 
before simply because no one has known to 
look for it. An experimenter, encountering 
it in some device might dismiss it as a 
malfunction and simply turn the thing off 
for a time.

The real surprise of this analysis is 
that discontinuities in higher dimensions 
should be expected to make it easy and 
natural for systems to reach these grazing 
points, which Jeffrey also refers to as 
“points of indecision”. Filippov’s peculiar 
discontinuous mathematics of 50 years ago 
could be far more important than most of 
us have suspected.� ❐
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What might happen 
if the coefficients 
appearing in differential 
equations aren’t 
always smooth?
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