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Topological entanglement entropy of a
Bose–Hubbard spin liquid
Sergei V. Isakov1, Matthew B. Hastings2,3 and Roger G. Melko4*
The Landau paradigm of classifying phases by broken
symmetries was shown to be incomplete when it was realized
that different quantum-Hall states can only be distinguished
by more subtle, topological properties1. The role of topology
as an underlying description of order has since branched out
to include topological band insulators and certain featureless
gapped Mott insulators with a topological degeneracy in the
ground-state wavefunction. Despite intense work, very few
candidates for such topologically ordered ‘spin liquids’ exist.
The main difficulty in finding systems that harbour spin-liquid
states is the very fact that they violate the Landau paradigm,
making conventional order parameters non-existent. Here, we
describe a spin-liquid phase in a Bose–Hubbard model on the
kagome lattice, and determine its topological order directly
by means of a measure known as topological entanglement
entropy. We thus identify a non-trivial spin liquid through its
entanglement entropy as a gapped ground state with emergent
Z2 gauge symmetry.

Quantum spin-liquid phases2,3 are notoriously elusive, both in
real materials and in theoretical models. In part, this is due to the
delicate balance of microscopic interaction that must occur so that
conventional symmetry-broken order is suppressed at low temper-
atures. The search is also hampered by the lack of a measurable
order parameter, such as magnetization, that would offer a positive
indicator of spin-liquid behaviour. Instead, the current procedure
of identifying spin liquids involves eliminating all possible order
parameters through exhaustive searches of correlation functions4.
Theoretical work has nonetheless established a classification scheme
of gapped spin-liquid states based on the topological degeneracy of
their wavefunction2. In fact, there exist several model Hamiltonians
that have been proposed to contain spin-liquid ground states with
the most trivial Z2 topological order (corresponding to a four-fold
degeneracy on a torus). One of the earliest was the triangular-lattice
quantum dimer model5—where dimers are intended to be an
effective description of local singlet correlations, not physical
spins. Another paradigm in studying topological order has recently
emerged in the toric code6, as it is the simplest of a class of exactly
solvable models (such as the Levin–Wen models7) describing
different topological quantum field theories. Unfortunately, these
models require somewhat artificialmulti-spin interaction terms.

In order for a model to be relevant for real physical systems,
it is essential to find a spin Hamiltonian with simple two-body
interaction terms and a topologically ordered spin-liquid state.
One important step in this direction was the introduction of a
kagome Bose–Hubbard model8. Although this model has a four-
spin interaction, it contains a Z2 spin liquid over an extended
region of its phase diagram. Previously, a related model was shown
through quantumMonte Carlo (QMC) studies to have a featureless

1Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland, 2Duke University, Department of Physics, Durham, North Carolina, 27708, USA, 3Microsoft
Research, Station Q, CNSI Building, University of California, Santa Barbara, California, 93106, USA, 4Department of Physics and Astronomy, University of
Waterloo, Ontario, N2L 3G1, Canada. *e-mail: rgmelko@uwaterloo.ca.

a

b

c dd

L/8

3L/8

5L/8

Figure 1 | The kagome lattice used in quantumMonte Carlo simulations.
Illustrated is an L=8 toroid (a periodic lattice with 8×8×3 spins). In
equation (1), the subregions are A1= a∪b∪c∪d, A2= a∪b∪c,
A3= a∪b∪d, and A4= a∪b. The width of the annulus is R=6, and its
thickness is r= 2.

Mott-insulating state9,10, where, like most experimental candidates,
the absence of order in correlation functions was the main evidence
for spin-liquid behaviour.

In 2005 and 2006, several authors11–14 identified a quantity 2γ
called the topological entanglement entropy (EE), which is designed
to replace the concept of an ‘order parameter’ in a topologically
ordered system. Based on the idea that the spin-liquid state is a
type of collective paramagnet, the topological EE is designed to pick
up non-local correlations in the ground-state wavefunction that
are not manifest as conventional long-range order. However, these
correlations contribute to the total entanglement between different
subregions of the system A and its complement B (where A∪B is
the entire system). The EE between A and B can be quantified by
the Rényi entropies,

Sn(A)=
1

1−n
ln
[
Tr(ρn

A)
]

where ρA is the reduced density matrix of region A. In a
topologically ordered state, the non-local entanglement gives a
topology-dependent subleading correction to ‘area-law’ scaling of
the EE of subregion A. In 2D, Sn(A)= a`− γ j+···, where a is a
non-universal constant, ` is the boundary length between A and B,
and j is the number of disconnected boundary curves. In Levin and
Wen’s13 construction (used in the calculations in this paper), the
topological contribution can be isolated from the area-law scaling
(plus any corner contributions) by considering separately the
Rényi15 entropies on four differently shaped subregions (Fig. 1),

2γ = lim
r,R→∞

[−Sn(A1)+Sn(A2)+Sn(A3)−Sn(A4)] (1)
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Figure 2 | The phase diagram, structure factors and scaling at the quantum critical point. a, The schematic phase diagram of the kagome Bose–Hubbard
model (2). Insets show the structure factor (Fourier transform of the equal-time density–density correlation function) for V/t=6 and 8 at high T (β = 3,
top) and low T (V/t=8 and β =48, bottom) in the spin-liquid phase. b, Data collapse of the superfluid density, which in the vicinity of a continuous phase
transition should scale as ρs(L,V/t,β)= L−1F([V/t−(V/t)c]L1/ν ,β/Lz). Here, F is the scaling function, z is the dynamical critical exponent, and ν is the
correlation-length exponent. It follows from the above equation that if we plot ρsL as a function of [V/t−(V/t)c]L1/ν at fixed β/Lz then the curves for
different system sizes should collapse onto the universal curve F for appropriate values of ν and (V/t)c, as shown for ν=0.6717, (V/t)c= 7.0665,
and β/L= 2.

Naively, because calculating γ requires complete knowledge
of the ground-state wavefunction (through ρA), previous efforts
to calculate it have been restricted to models that can be solved
exactly either analytically (for example the toric code) or through
numerical exact diagonalization on small size systems (for example
the triangular lattice dimer model16). The ability to use γ as a
general tool to search for and characterize non-trivial topologically
ordered phases has been hindered by the inability to access the
wavefunction in large-scale numerical methods, namely QMC,
currently the only scalable quantum simulation method in 2D and
higher. However, with the recent introduction of measurement
methods based on the ‘replica trick’, QMC is now able to access
Sn(A) for n≥ 2 (ref. 17), therefore giving one a method to calculate
γ in large-scale simulations of quantum spin liquids.

Using stochastic-series-expansion QMC (refs 18,19), we sim-
ulate a hard-core Bose–Hubbard model on the kagome lattice,
with nearest-neighbour hopping and a six-site potential around
each lattice hexagon,

H =−t
∑
〈ij〉

[b†
i bj+bib

†
j ]+V

∑
7

(n7)2 (2)

where b†
i (bi) is the boson creation (annihilation) operator, and

n7 =
∑

i∈7(ni−1/2), where ni = b†
i bi is the number operator. As

mentioned above, variations of this model with more complicated
spin interactions are known to harbour a robust spin-liquid ground
state8–10. In this paper, we consider the simplified Hamiltonian
(equation (2)), with only nearest-neighbour hopping, which may
be more amenable to construction for example in real cold atomic
systems. We observe a transition at low temperature between a
superfluid phase and an insulating phase for (V /t )c ≈ 7.0665(15)
(Fig. 2). For V /t > (V /t )c the superfluid density scales to zero,
and density and bond correlators are featureless (similar to the case
discussed in ref. 9). This strongly suggests that the insulating phase
is a spin liquid. To characterize it, we calculate the topological EE,
equation (1) with n= 2, which for a Z2 topological phase should
approach 2ln(2) in the limit T → 0 (ref. 13). The regions Ai are
shown in Fig. 1 for an L= 8 system; these are scaled proportionally
for the other system sizes studied in this paper, where L is always
a multiple of 8. Results for γ as a function of inverse temperature
β= t/T are shown in Fig. 3 for severalV /t .

In the topological phase (V /t = 8) we see two distinct plateaux,
at differing temperatures, with a non-zero topological EE as T→ 0.
The phenomenon is known to occur in other models, such as

the toric code20, where the topological EE at zero temperature
of 2 ln(2) can be viewed as a sum of electric and magnetic
contributions, each contributing ln(2). If the electric and magnetic
defects have different energies, theory predicts two distinct plateaux
corresponding to these individual crossover temperatures20, as
seen in our data. However, at any fixed non-zero temperature,
in the limit of large L, the topological EE vanishes, as the
probability of having thermally excited defects in the annulus A1
(Fig. 1) tends to unity. Indeed, under the assumption that the
probability of having a defect is proportional to L2 exp(−E/kBT ),
where E is the defect energy, the temperature required to see
accurate plateaux in the topological EE scales logarithmically
with L. In Fig. 3, we show finite-size scaling data consistent with
this logarithmic scaling.

Our value for the topological EE at the higher-T plateau is
indeed very close to ln(2), becoming more accurately quantized at
larger system sizes (Fig. 3b). The value of 2ln(2) at the lower-T
plateau is not as accurately quantized for L= 8, owing to finite size
effects. However, for Z2 (and many other) topological theories, the
high-T plateau is sufficient to fully characterize the emergent gauge
symmetry. Namely, the set of low-energy quasi-particles (either
electric or magnetic particles in the Z2 case) closes under fusion,
and the difference between the upper and lower plateaux equals the
logarithm of the total quantum dimension of this set. Therefore,
the Z2 result can be generalized for other discrete gauge theories,
where the high-T plateau is always half of the low-T plateau (note
for non-Abelian theories this requires that the low energy particles
be electric). Indeed, we observe a high-T plateau consistent with
this result, confirming to high accuracy that our spin liquid has an
emergent discrete Z2 gauge symmetry.

In the superfluid phase, the topological EE tends to zero asT→0
(Fig. 3). However, surprisingly, for V /t = 6 we observe a plateau
in the topological EE at intermediate temperatures, T ∼ t . This
behaviour should occur near other transitions out of topological
phases. To understand the physics and illustrate the ubiquity of this
effect, we consider the same phenomenon in the toric code induced
by adding a parallel magnetic field. Consider a square-lattice toric-
code Hamiltonian H =−U

∑
+

∏
i∈+S

z
i − g

∑
2
∏

i∈2S
x
i −h

∑
iS

z
i ,

where the first vertex term penalizes vertices that do not have an
even number of up spins on the legs of the neighbouring bonds, and
the second sum is over plaquettes. Suppose U � g . By increasing
h/g , we induce a T = 0 phase transition from a topological phase to
a trivial phase. In a non-zero temperature regimewhereU�T�g ,
the problem becomes classical: the quantum dynamics induced by
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Figure 3 |QuantumMonte Carlo measurement of the topological entanglement entropy. a, The topological entanglement entropy (EE) measured on an
L=8 system as a function of inverse temperature β = t/T. The plateaux are a measure of the total quantum dimension13, and should be ln(2) and 2ln(2)
for a Z2 spin liquid. b, The approach of the topological EE to the first plateau, for different system sizes at V/t=8. The value of the crossover temperature
(βx), measured at 2γ = ln(2)/2, shows a logarithmic dependence on system size (inset).

g can be ignored and the vertex term restricts us to states described
by closed loops of up spins. In this classical problem, there is a
phase transition as h/T increases from a topological phase with
long loops to a trivial phase with only short loops (this transition
is dual to the 2D Ising transition). Thus, at higher temperatures
we see a topological EE, whereas at lower T the topological EE
disappears for large enough h/g . In fact, this kind of physics has
been suggested to occur as a ‘cooperative paramagnet’ in a related
kagome lattice model10.

The QMC results indicate a quantum critical point, separating
the superfluid and topological phases, for a critical V /t located
precisely by studying the finite size scaling of the superfluid
density ρs (Fig. 2). The data scales very well with the dynamical
exponent z = 1 and the XY value21 for the correlation length
exponent ν = 0.6717 at (V /t )c = 7.0665(15). This lends support
to the prediction that such superfluid–spin liquid critical points
may actually of an exotic deconfined type called XY∗ (refs 22,
23). Measurements of other critical exponents which differ from
their XY values, in particular η, would be required to confirm
this prediction. At T = 0, near the quantum critical point, we
expect good quantization of the topological EE whenever L is
sufficiently large compared with the correlation length ξ , so the
topological EE may be controlled by a scaling function of L/ξ . At
T > 0, the scaling of the topological EE in the quantum critical
fan seems not to have been considered previously; the plateau
at intermediate temperatures for V /t = 6 can perhaps also be
understood as a manifestation of increasing T moving one from
the zero temperature trivial phase into the quantum-critical fan.
Even at T = 0, the behaviour of constant terms in the entropy at a
critical point is largely unexplored, and may depend sensitively on
the geometry used to define it. Scaling predicts that near the critical
point the topological EE is a function of β/ξ and L/ξ , implying
that in the topological phase, corrections to 2ln(2) should depend
on (L/ξ)2 exp(−β/ξ), consistent with a defect energy of order
1/ξ . Based on the intermediate temperature plateau at V /t = 6,
it seems likely that only one type of defect, the magnetic defect,
becomes gapless at criticality.

To identify a topological phase, it is essential to perform non-
local probes. Experimentally, such non-local probes could involve
braiding operations, as in the proposal of ref. 24, or vison-trapping
experiments25,26. In this paper, we have shown that the topological
entanglement entropy (EE), calculated by QMC using the replica
trick, is a practical numerical non-local probe. Other probes might
be possible, such as calculating the degeneracy of the ground
state on lattices of different topology. However, such a probe

suffers from two drawbacks. First, studying surfaces of different
Euler characteristic requires the introduction of defects, which is
undesirable. Second, although it would be possible in QMC to
calculate the degeneracy of the ground state by integrating the
specific heat, it requires accurate simulations at a temperature low
enough to suppress all excitations—a regime where simulation
ergodicity typically becomes a problem. In contrast, we have
demonstrated that accurate measurement of topological EE is
possible at relatively high temperatures, as long as at least one
kind of topologically non-trivial defect is suppressed. Thus, we
expect that replica-trick QMCmeasurements of topological EE will
be a fundamental technique in the characterization of non-trivial
topological phases in the future.
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