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The pirouette effect in turbulent flows
Haitao Xu1, Alain Pumir2 and Eberhard Bodenschatz1,3,4*
The disorganized fluctuations of turbulence are crucial in the
transport of particles or chemicals1,2 and could play a decisive
role in the formation of rain in clouds3, the accretion process
in protoplanetary disks4, and how animals find their mates
or prey5,6. These and other examples7 suggest a yet-to-be-
determined unifying structure of turbulent flows8,9. Here, we
unveil an important ingredient of turbulence by taking the
perspective of an observer who perceives its world with respect
to three distant neighbours all swept by the flow. The time
evolution of the observer’s world can be decomposed into
rotation and stretching. We show that, in this Lagrangian
frame, the axis of rotation aligns with the initially strongest
stretching direction, and that the dynamics can be understood
by the conservation of angular momentum. This ‘pirouette
effect’ thus appears as an important structural component
of turbulence, and elucidates the mechanism for small-scale
generation in turbulence.

To an observer who perceives its world with respect to three
distant fluid tracers, all carried by the flow, the seemingly random
turbulent motion modifies the distances to and between them.
Turbulent motion, on average, separates two tracers10–12. However,
as shown in Fig. 1, given a set of four tracers initially located on
a regular tetrahedron, that is, with all pairs equally separated by
a distance R0, the growth of the distance between pairs is very
uneven, resulting in strong shape deformation13–16. As first observed
in ref. 17, the resulting ‘minimal’ four-point description provides
important insights into the dynamics of turbulence.

Remarkably, our study of the relative motion between these
neighbouring particles, as shown in Fig. 1, reveals the alignment of
the rotation towards the direction of the initially strongest stretch-
ing, while the angular momentum remains constant (statistically,
see Supplementary Information). This is a manifestation of the
‘pirouette effect’, well known from classical ballet or ice-skating.

We used a particle tracking technique to follow several hundreds
of nearly neutrally buoyant, 30 µm size polystyrene particles as
tracers in a turbulent water flow11,18,19 with high turbulence
intensities as defined by the Taylormicroscale Reynolds number10,20
350 ≤ Rλ ≤ 815. We recorded tracer motion in volumes as large
as (5 cm)3 with a spatial resolution of approximately 20 µm and a
time resolution of 0.04ms by stereoscopic observation using three
high-speed cameras. We accurately determined the trajectories
and velocities of millions of tracers in three dimensions, from
which we extracted the dynamics of initially regular tetrahedra by
conditioning statistics on four tracers with nearly equal mutual
distances (as in ref. 15 and Supplementary Information). We
complemented the experiments by direct numerical simulations
(DNS) of theNavier–Stokes equations for 100≤Rλ≤170 (ref. 14).

The time evolution of the observer’s world can be decomposed
into rotation and stretching, which is measured by the perceived
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velocity gradientM, defined as:

uai = ρ
a
j Mji (1)

where ρa
i and uai represent the component in the direction i

(i = 1,2 or 3) of the position and velocity of the ath tracer
(see Supplementary Information). The perceived velocity gradient,
M, can then be uniquely decomposed as a sum of a straining
motion, S, and of a rotation, �: M= S+�, with S≡ (M+MT )/2
and � ≡ (M−MT )/2. In addition, the straining motion can be
understood as a superposition of simple stretching or compression
along three orthogonal directions, denoted êi. The corresponding
three stretching rates λi are arranged here in decreasing order: λ1≥
λ2 ≥ λ3. A positive (respectively negative) value of λi corresponds
to stretching (respectively compression) along the direction given
by êi. The rotation matrix � is ‘characterized’ by a local rotation
vectorωwith its direction denoted as êω (note that the conventional
vorticity vector is 2ω). The angularmomentumof the systemof four
points, 0, defined by:

0=

3∑
a=1

ρa
×ua (2)

is related, to a good approximation (see Supplementary Informa-
tion), to the rotation vector through the relation 0= I ·ω, where
I is the moment of inertia tensor familiar in classical mechanics21.
In qualitative terms, the angular momentum 0 is proportional
to the rotation vector ω, multiplied by the square of a distance,
which characterizes the extent of the set of points in the direction
transverse to the direction of rotation vector ω. For a Lagrangian
tetrahedron, angular momentum is not strictly conserved (as stud-
ied in the Supplementary Information). However, as we demon-
strate below, the conservation is a good approximation for the
short times we examined.

The shape dynamics can be conveniently studied in the basis
given by the eigenvectors (ê1(0), ê2(0), ê3(0)) of the strain at a
chosen initial time at which the tetrads are equilateral. The strong
stretching in the direction ê1(0) results in the shape becoming
thinner in the direction 1, thus leading to a reduction of the
component I11, compared to the components in the other directions
I22 and I33. If angular momentum is conserved, then it implies
that the direction of rotation êω at a time t +1t should align
preferentially with the initial stretching direction ê1(0). The effect is
clearly demonstrated in our experiments, as shown in Fig. 2.

The time evolution of the alignment between the initial
stretching êi(0) and rotation êω(t ) can be quantified by studying the
square of the cosine of the angles between the unit vectors:

Ci,ω(t )≡〈(êi(0) ·êω(t ))2〉
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Figure 1 | Tetrahedron shape deformation by turbulent flows. a, Four
tracers, defining initially the regular tetrahedron with white edges, initially
of size R0, evolved into the deformed tetrahedron with purple edges. The
dotted lines mark the trajectories of each of the tracers. b, The motion of
the tetrahedron’s vertices, as seen by the blue ‘observer’, leads to an
elongation of the shape in a particular direction. The experimental data was
obtained in a turbulent flow at Rλ= 350. The initial size of the tetrahedron’s
edges is R0=8 mm. The size of the largest whirls of the flow (the integral
length scale) is L= 70 mm; the size of the smallest whirls (the Kolmogorov
scale) is η=84 µm. The time separating the initial (white) and final
(purple) tetrahedron is t= 56 ms, which corresponds to 0.4t0 (t0 defined
in the text) for this tetrahedron. The dots along the trajectories indicate the
locations of the vertices at time intervals of1t= 2 ms. The size of the
tetrads remains within the inertial range during the time interval discussed
here (t≤0.4t0), see Supplementary Information.

where the brackets 〈·〉 denote an average over many configurations,
starting with an initially regular tetrahedron of fixed size. As a
point of reference, we note that when the two vectors êi and êω
are randomly oriented with respect to each other, the distribution
of |êi · êω| is uniform, and the value of 〈(êi · êω)2〉 is equal to
1/3. A value of 〈(êi · êω)2〉 greater or less than 1/3 indicates that
the two vectors tend to be oriented preferentially parallel or
perpendicular to each other.

Figure 3 quantifies the alignment effect between the direction
of the rotation vector êω(t ) with the strongest initial stretching
direction ê1(0) for different turbulence levels and regular tetrahedra
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Figure 2 | The Pirouette effect: alignment of the rotation vector with the
direction of the initially strongest stretching. a, The initial shape of the
tetrahedron and the rotation vector, ω (purple arrow), shown in the
reference frame specified by the eigenvectors (ê1(0),ê2(0),ê3(0)) of the
strain. The direction associated with the fastest stretching, ê1(0), is
vertical. b, The tetrahedron, shown at t= 36 ms, or 0.25t0, has elongated in
the vertical direction ê1(0). This elongation results in a reduced moment of
inertia in the ê1(0) direction, compared with the two other directions.
c, The rotation vector ω(t) aligns with the initial direction of the fastest
stretching ê1(0). This is consistent with angular momentum conservation.
The example shown here is the same tetrahedron as in Fig. 1.

with side length R0. The distances R0 were chosen in the inertial
range, where neither the viscosity nor the large-scale details of the
flow are expected to play a role20. As shown in Fig. 3a, the function
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Figure 3 |Alignment of êω(t) with ê1(0) for tetrahedra with different initial sizes R0 and flows with different turbulence levels, as indicated by the
Reynolds number Rλ. a, The evolution of C1,ω(t), measuring the alignment of êω(t) and ê1(0), as a function of t/t0, with t0= (R2

0/ε)1/3. At t=0, C1,ω is very
close to 1/3, implying a nearly random alignment between ê1(0) and êω(0). The increase of C1,ω(t) indicates that the direction of rotation êω(t) becomes
aligned with ê1(0) during the early stage of the evolution. The maximum of C1,ω(t) is reached at tmax∼0.25t0. Data from experiments (labelled as EXP) are
shown as symbols and the numerical results (labelled as DNS) are shown as solid lines. b, The evolution of the PDF of the cosine of the angle between
êω(t) and ê1(0), for tetrahedra with an initial size R0= 15 mm, corresponding to R0/η= 500 or R0/L=0.21, in an intense turbulent flow with Reynolds
number Rλ=690. At times 0.2≤ t/t0 ≤0.4, the PDFs peak at values of the cosine close to 1, that is, nearly complete alignment between the two vectors.
c, The evolution of the relative value of the moment of inertia tensor in the direction of ê1(0) : 〈I11(t)〉/〈I11(t)+ I22(t)+ I33(t)〉. The decrease of the moment
of inertia tensor in this direction is a consequence of the strong stretching along ê1(0). The minimum value of 〈I11(t)〉/〈I11(t)+ I22(t)+ I33(t)〉 is reached at
the time where the alignment between êω(t) and ê1(0) is the most significant. d, Conservation of angular momentum along ê1(0), as measured by the
change of the angular momentum Γ 2

1 (t) relative to its initial value Γ 2
1 (0). In all the experimental data, the initial size of the tetrahedra R0 are within the

inertial range (η� R0 < L). At Rλ= 350, 690 and 815, the corresponding ratios between the integral scale and the Kolmogorov scale are, respectively,
L/η≈830, 2,300, and 3,000.

C1,ω(t ) starts at a value very close to 1/3 at time t=0, indicating little
correlation between the two vectors at time t =0. Then the function
C1,ω(t ) increases significantly with time, to a value of approximately
0.45 at a time t ≈ 0.2t0, where t0 = (R2

0/ε)
1/3 is the characteristic

turbulent time at scale R0 for a flow with energy dissipation rate
per unit mass ε in the classical Kolmogorov theory20. As shown in
Fig. 3b, at t ≈ t0/4 and t0/2 the probability density functions (PDFs)
of |ê1(0)·êω(t )| peaks at |ê1(0)·êω(t )|≈ 1, whereas at t ≈ 0 it is flat.
This demonstrates beautifully the preferential alignment between
the two vectors for t > 0. The origin of the alignment can be traced
to the weakening of the component of the moment of inertia tensor
matrix I11, due to the strong stretching along the direction ê1(0)
compared with the two other components I22 and I33. Remarkably,
the relative value of I11 reaches a minimum at tmax ≈ 0.2− 0.3t0
(Fig. 3c). This is the time needed to reach the best alignment
between rotation and the strongest initial stretching direction ê1(0).
This is expected from angular momentum conservation. Figure 3d

demonstrates that for short times, up to 0.1t0, angular momentum
is conserved. The mean value of Γ 2

1(t ), divided by its initial value
at t = 0, is shown as a function of t/t0 for several initial sizes R0.
A slow increase of I11(t ), induced by the increase in inter-particle
separation at later time (relative turbulent dispersion9–12), caused
the observed drift in Γ 2

1(t ). Our results thus suggest that, in the
inertial range, the dynamics of alignment is statistically self-similar,
and depends simply on time and initial scales through the reduced
variable t/t0. In addition, our numerical simulations show that the
alignment of the vectors ê1(0) and êω(t ) is observed even at smaller
scales, where viscosity dominates, albeit with a viscous timescale.

The alignment properties between the rotation direction êω and
the stretching direction êi at the same time have been investigated
for the true velocity gradient tensor22–29. On the basis of the
intuitive notion that stretching is strongest in the direction ê1, it
was expected that there would be a strong alignment of êω with
ê1. In contrast, it was found that the direction êω is essentially
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independent of the equal-time strongest stretching ê1, but rather
aligns preferentially with the direction of the intermediate rate of
strain, ê2, which is associated on average with weaker stretching22,23.
This misalignment between ê1 and êω weakens the nonlinear
interaction between strain and rotation that is known to be
necessary for the generation of smaller scales from larger ones,
which is the hallmark of turbulence10. This puzzling observation has
since been the subject of numerous studies24–27,29.

Our results shed new light on this puzzle. The strain does indeed
align rotation êω(t ) with the strongest initial stretching direction
ê1(0), albeit with a spatial-scale dependent delay of ∼0.2− 0.3t0.
Our DNS results show this conclusion to extend down to the
Kolmogorov scale, where M reduces to the true velocity gradient
tensor. Thus, the alignment with the initially strongest stretching
direction is a dynamical process: not surprisingly, the alignment
between êω(t ) and ê1(0) builds up over time. Understanding
the alignment properties between êω and the eigenvectors of the
strain ê1 at equal time (Eulerian point of view) requires a proper
description of the rotation of the eigenvectors (ê1(t ), ê2(t ), ê3(t )),
which is affected by nonlocal (pressure) effects28. The time of
decorrelation between the direction of ê1(t ) and ê1(0) is found to be
on the order of 0.2t0, comparable to the time of alignment of êω(t )
and ê1(0), thus explaining the lack of observed alignment between
êω(t ) and ê1(t ). Our numerical data demonstrates that the much-
reduced picture discussed extends to the true velocity gradient
tensor and thus adequately captures the physics of turbulent
small scale generation17,30.
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