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Experimental high-dimensional two-photon
entanglement and violations of generalized
Bell inequalities
Adetunmise C. Dada1*, Jonathan Leach2, Gerald S. Buller1, Miles J. Padgett2 and Erika Andersson1

Quantum entanglement1,2 plays a vital role in many
quantum-information and communication tasks3. Entangled
states of higher-dimensional systems are of great interest
owing to the extended possibilities they provide. For exam-
ple, they enable the realization of new types of quantum
information scheme that can offer higher-information-density
coding and greater resilience to errors than can be achieved
with entangled two-dimensional systems (see ref. 4 and
references therein). Closing the detection loophole in Bell
test experiments is also more experimentally feasible when
higher-dimensional entangled systems are used5. We have
measured previously untested correlations between two
photons to experimentally demonstrate high-dimensional
entangled states.We obtain violations of Bell-type inequalities
generalized to d-dimensional systems6 up to d = 12. Further-
more, the violations are strong enough to indicate genuine
11-dimensional entanglement. Our experiments use photons
entangled in orbital angular momentum7, generated through
spontaneous parametric down-conversion8,9, and manipulated
using computer-controlled holograms.

Quantum-information tasks requiring high-dimensional bipar-
tite entanglement include teleportation using qudits10,11, general-
ized dense coding (that is, with pairs of entangled d-level sys-
tems; ref. 12) and some quantum key distribution protocols13.
More generally, schemes such as quantum secret sharing14 and
measurement-based quantum computation15 apply multiparticle
entanglement. These are promising applications, especially in view
of recent progress in the development of quantum repeaters (see
ref. 16 and references therein). However, practical applications
of such protocols are only conceivable when it is possible to
experimentally prepare, and moreover detect, high-dimensional
entangled states. Therefore, the ability to verify high-dimensional
entanglement between physical qudits is of crucial importance.
Indeed, much progress has generally been made on the generation
and detection of high-dimensional entangled states (please see
ref. 17 and references within).

Here we report the experimental investigation of high-
dimensional, two-photon entangled states. We focus on photon
orbital angular momentum (OAM) entangled states generated by
spontaneous parametric down-conversion (SPDC), and demon-
strate genuine high-dimensional entanglement using violations
of generalized Bell-type inequalities6. Previously, qutrit Bell-type
tests have been carried out using photon OAM to verify three-
dimensional entanglement (see ref. 18 and references within). In
addition to testing whether correlations in nature can be explained
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by local realist theories19, the violation of Bell-type inequalities may
be used to demonstrate the presence of entanglement. Bell-type
experiments have been carried out using two-dimensional sub-
spaces of the OAM state space of photons20,21 and experimentalists
have demonstrated two-dimensional entanglement using up to 20
different two-dimensional subspaces22. Careful studies have also
been carried out to describe how specific detector characteristics
bound the dimensionality of the measured OAM states in photons
generated by SPDC using Shannon dimensionality23.

Our experimental study of high-dimensional entanglement is
based on the theoretical work of Collins et al.6, which was applied in
experiments for qutrits encoded in the OAM states of photons18,24.
We encode qudits using theOAMstates of photons, with eigenstates
defined by the azimuthal index `. These states arise from the
solution of the paraxial wave equation in its cylindrical co-ordinate
representation, and are the Laguerre–Gaussian modes LGp,`, so
called because they are light beams with a Laguerre–Gaussian
amplitude distribution.

In our set-up (Fig. 1), OAM entangled photons are generated
through a frequency-degenerate type-I SPDC process, and the
OAM state is manipulated with computer-controlled spatial
light modulators (SLMs) acting as reconfigurable holograms.
Conservation of angular momentum ensures that, if the signal
photon is in the mode specified by |`〉, the corresponding idler
photon can only be in the mode |−`〉. Assuming that angular
momentum is conserved9, a pure state of the two-photon field
produced will have the form

|9〉=

`=∞∑
`=−∞

c`|`〉A⊗|−`〉B

where subscripts A and B label the signal and idler photons
respectively, |c`|2 is the probability to create a photon pair with
OAM±`h̄ and |`〉 is theOAMeigenmodewithmode number `.

It has been shown6 that, for correlations that can be described by
theories based on local realism1, a family of Bell-type parameters Sd
satisfies the inequalities

S(local realism)
d ≤ 2, for all d ≥ 2 (1)

Alternatively, if quantum mechanics is assumed to hold, then the
violation of an inequality of type (1) indicates the presence of
entanglement. Sd can be expressed as the expectation value of
a quantum mechanical observable, which we denote as Ŝd . The
expressions for Sd , Ŝd and the operators Ŝ2 and Ŝ3 are provided in
Supplementary Section SI.
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Examples of hologram states for d = 11:
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Figure 1 | Schematic representation of experimental set-up for violations of Bell-type inequalities. C(Aa= v,Bb=w) or C(θaA,θ
b
B ) is the coincidence count

rate when SLM A is in state |v〉Aa or |θaA〉 and SLM B is in state |w〉Bb or |θbB 〉 respectively.

The parameters Sd are calculated using coincidence probabilities
for measurements made locally by two observers, Alice and Bob,
on their respective subsystems, which in our case are the signal
and idler photons from the SPDC source. Alice’s detector has
two settings labelled by a ∈ {0,1} with d outcomes for each
setting, and similarly for Bob’s detector with settings b∈ {0,1}. The
measurement bases corresponding to the detector settings of Alice
and Bob are defined as

|v〉Aa =
1
√
d

d−1∑
j=0

exp
[
i
2π
d

j(v+αa)
]
|j〉 (2)

|w〉Bb =
1
√
d

d−1∑
j=0

exp
[
i
2π
d

j(−w+βb)
]
|j〉 (3)

where v and w both run from 0 to d−1 and denote the outcomes
of Alice’s and Bob’s measurements respectively, and the parameters
α0=0, α1=1/2, β0=1/4 and β1=−1/4.

The measurement bases {|v〉Aa } and {|w〉
A
a } have been shown5,25

to maximize the violations of inequality (1) for the maximally
entangled state of two d-dimensional systems given by |ψ〉 =
(1/
√
d)
∑d−1

j=0 |j〉A⊗|j〉B. It turns out that we are able to parameterize
these d-dimensional measurement basis states with ‘mode analyser’
angles θA and θB, and write them in the form

|v〉Aa ≡ |θ
a
A〉=

1
√
d

`=+[d/2]∑
`=−[d/2]

exp
[
iθ aAg (`)

]
|`〉, and

|w〉Bb ≡ |θ
b
B〉=

1
√
d

`=+[ d2 ]∑
`=−[ d2 ]

exp
[
iθ bBg (`)

]
|`〉 (4)

where

θ aA= (v+a/2)2π/d

θ bB = [−w+1/4(−1)
b
]2π/d

The function g (`) is defined as

g (`)= `+
[
d
2

]
+ (d mod 2)u(`)

where [x] is the integer part of x , and u(`) is the discrete unit
step function.

Figure 2 shows an example of the experimental data points for
the self-normalized coincidence rates as function of the relative
angle (θA−θB) using d= 11 (see also Supplementary Fig. S1). For a
maximally entangled state

|8〉=
1
√
d

[d/2]∑
`=−[d/2]

h(`)|`〉A⊗|−`〉B

where h(`)= 1 for all ` when d is odd, and h(` 6= 0)= 1, h(0)= 1
when d is even, the coincidence rate of detecting one photon in state
|θA〉 and the other in state |θB〉 is proportional to

C(θA,θB)= |〈θA|〈θB||8〉|2∝
cos(d(θA−θB))−1
d3[cos(θA−θB)−1]

(5)

The key result of our paper is shown in Fig. 3, which shows a
plot of experimental values of parameter Sd as a function of the
number of dimensions d . The plot compares theoretically predicted
violations for a maximally entangled state, the experimental
readings and the local hidden variable (LHV) limit. The maximum
possible violations (shown in Supplementary Table S1) are slightly
larger than the corresponding violations produced by a maximally
entangled state. Violations persist up to as much as d = 12 when
entanglement concentration26 is applied. We find S11= 2.39±0.07
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Figure 2 | Coincidence count rate (self-normalized) as a function of the
relative orientation angle between state analysers (θA−θB). Equation (5)
for a state with maximal 11-dimensional entanglement is fitted to the
experimental data with the vertical offset and amplitude left as free
parameters. Errors were estimated assuming Poisson statistics.
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Figure 3 | Experimental Bell-type parameter Sd versus number of
dimensions d. Sd> 2 violates local realism for any d≥ 2. The plot compares
the theoretically predicted violations by a maximally entangled state and
the LHV limit with the experiments. Violations are observed for up to
d= 12. Errors were estimated assuming Poisson statistics.

and S12 = 2.24 ± 0.08, which clearly violate Sd ≤ 2 (see also
Supplementary Table S4). In the corresponding experiment using
LGp,` modes with only p = 0, violations are obtained up to
d=11.Without entanglement concentration, we observe violations
only up to d = 9 (please see Supplementary Fig. S2 in Section
SIV). Above d ∼ 11, the strength of the signal becomes so low
that noise begins to overshadow the quantum correlations. In
Fig. 2, the theoretical prediction in equation (5) for a state with
maximal 11-dimensional entanglement is fitted to the experimental
coincidence data obtained using the mode analyser settings defined
in equation (4) for d = 11, with only the vertical offset and
amplitude left as free parameters. The observed fringes are seen to
closely match those theoretically obtained for a state with maximal
11-dimensional entanglement.

The violation of a Bell inequality in d× d dimensions directly
indicates that the measured state was entangled. It remains to de-
termine how many dimensions were involved in the entanglement.
Measuring the coincidence probabilities, that is, of there being
the joint state |`s〉⊗ |`i〉 (Fig. 4), together with the parameters Sd
for different d , can be seen as a partial tomography of the SPDC
source state. Numerical investigations indicate that a state with the
experimentally observed coincidence probabilities and parameters
S2,S3,...,S11 must contain genuine 11-dimensional entanglement.
In other words, it is not possible to obtain the observed levels of
violation with a state that contains entanglement involving only 10
dimensions or less. Our analysis assumes a special form of the states,
based on the coincidence measurement results shown in Fig. 4.
Further details are given in Supplementary Section SII.

Our results holdmuch promise for applications requiring entan-
gled qudits in general. As mentioned earlier, progress in the devel-
opment of quantum repeaters (see ref. 16 and references therein)
would make quantum key distribution using high-dimensional
entangled states13 a possible application. Conventional quantum
communication will fail for sufficiently large transmission distances
because of loss, and quantum repeaters are one possible solution
to this problem. Although experimental quantum key distribution
has been demonstrated with OAM qutrits24, our findings provide
experimental evidence that such protocols could be implemented
using photons entangled in OAM in up to 11 dimensions, resulting
in a considerable increase in information coding density.

A possible extension to our work would be to investigate the
generation of multiphoton, high-dimensional OAM entanglement.
We can conceive of achieving this using a cascade of down-
conversion crystals for generating multipartite entangled photons,
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Figure 4 | Experimental coincidence rates proportional to the probability
of measuring the state |`s〉⊗|`i〉with `s,`i=−5,...,+5. The coloured
and greyed-out bars depict the measurement results with and without the
application of Procrustean filtering respectively. The measurement time
was 20 s for each combination of `s and `i.

which has been done for polarization entangled photons17. It also
seems to be within reach to combine the high-dimensional photon
OAMentanglement with entanglement in the polarization and path
degrees of freedom, creating even larger hyper-entangled states (see
ref. 17 and references within).

On amore fundamental note, Bell test experiments carried out so
far have one or both of twomain loopholes, namely the locality and
detection loopholes. However, a recent theoretical work reveals that
even low-dimensional qudits can provide a significant advantage
over qubits for closing the detection loophole5. In fact, it was found
that as much as 38.2% loss can be tolerated using four-dimensional
entanglement. Our results raise interesting possibilities regarding
the role higher-dimensional entangled qudits could play in closing
this loophole. We emphasize that neither the detection nor the
locality loophole has been closed in our experiments, because the
overall efficiency of our experimental set-up is 1–2%, and the
switching time for our measurement devices (SLMs) is of the order
of tens of milliseconds. However, closing these loopholes was not
the immediate goal of our experiments. We are instead using the
violation of Bell inequalities, up to fair sampling assumptions, as a
means of verifying the presence of high-dimensional entanglement,
within the framework of quantummechanics.

In summary, we have been able to experimentally demonstrate
violations of Bell-type inequalities generalized to d-dimensional
systems6 with up to d = 12, enough to indicate genuine 11-
dimensional entanglement in the OAM of signal and idler photons
in parametric down-conversion. It seems that this could be
extended to even higher dimensions by using a brighter source
of entangled photons.

Methods
In our experiments, we use computer-controlled SLMs (Hamamatsu) operating
in reflection mode with a resolution of 600×600 pixels. In the detection, the
SLMs are prepared in the states defined in equation (4) respectively. An SLM
prepared in a given state transforms a photon in that state to the Gaussian |`= 0〉
mode. The reflected photon is then coupled into a single-mode fibre which
feeds a single photon detector. As only the |`= 0〉 mode couples into the fibre,
a count in the detector indicates a detection of the state in which the SLM was
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prepared. The hologram generation algorithm introduced in ref. 27 is applied
to configure the SLMs.

Figure 1 shows a schematic diagram of the experimental set-up as well as
examples of SLM settings used where d = 11. For the SPDC, we use a pump beam,
with `= 0, produced by a frequency-tripled, mode-locked Nd-YAG laser with an
average output power of 150 mW at 355 nm. The collimated laser beam is normally
incident on a 3-mm-long β-barium borate (BBO) crystal cut for type-I collinear
phase matching. A 50:50 beam splitter (BS) then separates the co-propagating
OAM entangled photons probabilistically into the signal and idler paths. Spectral
filters with 10 nm bandwidth are used to reduce the detection of noise photons.
The coincidence resolving time is 10 ns and an integration time of 20 s is used
for the measurements.

For tests within a d-dimensional subspace and for odd d , we choose
the modes `=−(d− 1)/2,...,0,...,(d− 1)/2 as the computational basis
states |j〉 in equations (2) and (3), where j = 0,...,d−1. For even d , we use
`=−d/2,...,−1,1,...,d/2, omitting the `= 0 mode. A projection of the SPDC
output state onto a d-dimensional subspace results in a non-maximally entangled
state owing to the limited spiral bandwidth28. To enhance the entanglement, we
use the so-called Procrustean method of entanglement concentration26. This is
generally done bymeans of a filtering technique that equalizes themode amplitudes,
thereby probabilistically enhancing the entanglement of the two-photon state29.
This can be achieved by applying local operations to one or both of the signal
and idler photons. We choose local operations matched to the spiral bandwidth
measurement for our SPDC source (please see Supplementary Section SIV), so as to
obtain a close approximation to a maximally entangled state. The method applied
in ref. 30 uses lenses for equalizing amplitudes in a superposition of three OAM
modes. We however use alterations of the diffraction efficiencies of blazed phase
gratings in the SLMs to achieve this goal for up to 14 modes. Figure 4 contrasts the
results of coincidence measurements with and without Procrustean filtering, with
the SLMs in the state {|`A〉⊗|`B〉} where `A,`B ∈ {−5,...,+5}. The disadvantage
of the Procrustean method is the associated reduction in the number of detected
photons (see Supplementary Section SIII for further details).
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