Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields

Abstract

Collective electron motion in condensed matter typically unfolds on a sub-femtosecond timescale. The well-defined electric field evolution of intense, phase-stable few-cycle laser pulses provides an ideal tool for controlling this motion. The resulting manipulation of local electric fields at nanometre spatial and attosecond temporal scales offers unique spatio-temporal control of ultrafast nonlinear processes at the nanoscale, with important implications for the advancement of nanoelectronics. Here we demonstrate the attosecond control of the collective electron motion and directional emission from isolated dielectric (SiO2) nanoparticles with phase-stabilized few-cycle laser fields. A novel acceleration mechanism leading to the ejection of highly energetic electrons is identified by the comparison of the results to quasi-classical model calculations. The observed lightwave control in nanosized dielectrics has important implications for other material groups, including semiconductors and metals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron emission from Xe and SiO2 nanoparticles.
Figure 2: Dependence of the cutoffs in the electron emission spectra from SiO2 nanoparticles on laser intensity.
Figure 3: Calculated electron energy spectra.
Figure 4: Calculated electron emission from a SiO2 nanosphere in a few-cycle laser field.

Similar content being viewed by others

References

  1. Vasa, P., Ropers, C., Pomraenke, R. & Lienau, C. Ultra-fast nano-optics. Laser Photon. Rev. 3, 483–507 (2009).

    Article  ADS  Google Scholar 

  2. Stockman, M. I. Ultrafast nanoplasmonics under coherent control. New J. Phys. 10, 025031 (2008).

    Article  ADS  Google Scholar 

  3. Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).

    Article  ADS  Google Scholar 

  4. Sukharev, M. & Seideman, T. Coherent control approaches to light guidance in the nanoscale. J. Chem. Phys. 124, 144707–144708 (2006).

    Article  ADS  Google Scholar 

  5. Furube, A., Du, L., Hara, K., Katoh, R. & Tachiya, M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 14852–14853 (2007).

    Article  Google Scholar 

  6. Cavalieri, A. L. et al. Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua. New J. Phys. 9, 242 (2007).

    Article  ADS  Google Scholar 

  7. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    Article  ADS  Google Scholar 

  8. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  9. Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

    Article  ADS  Google Scholar 

  10. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    Article  ADS  Google Scholar 

  11. Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    Article  ADS  Google Scholar 

  12. Stockman, M. I., Kling, M. F., Kleineberg, U. & Krausz, F. Attosecond nanoplasmonic-field microscope. Nature Photon. 1, 539–544 (2007).

    Article  ADS  Google Scholar 

  13. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article  ADS  Google Scholar 

  14. Paulus, G. G. et al. Measurement of the phase of few-cycle laser pulses. Phys. Rev. Lett. 91, 253004 (2003).

    Article  ADS  Google Scholar 

  15. Kling, M. F. et al. Control of electron localization in molecular dissociation. Science 312, 246–248 (2006).

    Article  ADS  Google Scholar 

  16. Dombi, P. et al. Observation of few-cycle, strong-field phenomena in surface plasmon fields. Opt. Express 18, 24206–24212 (2010).

    Article  ADS  Google Scholar 

  17. Stockman, M. I. & Hewageegana, P. Absolute phase effect in ultrafast optical responses of metal nanostructures. Appl. Phys. A 89, 247–250 (2007).

    Article  ADS  Google Scholar 

  18. Dombi, P., Rácz, P. & Bódi, B. Surface plasmon enhanced electron acceleration with few-cycle laser pulses. Laser Part. Beams 27, 291–296 (2009).

    Article  ADS  Google Scholar 

  19. Irvine, S. E., Dombi, P., Farkas, G. & Elezzabi, A. Y. Influence of the carrier-envelope phase of few-cycle pulses on ponderomotive surface-plasmon electron acceleration. Phys. Rev. Lett. 97, 146801 (2006).

    Article  ADS  Google Scholar 

  20. Donnelly, T. D., Ditmire, T., Neuman, K., Perry, M. D. & Falcone, R. W. High-order harmonic generation in atom clusters. Phys. Rev. Lett. 76, 2472–2475 (1996).

    Article  ADS  Google Scholar 

  21. Bhardwaj, V. R., Corkum, P. B. & Rayner, D. M. Recollision during the high laser intensity ionization of C60 . Phys. Rev. Lett. 93, 043001 (2004).

    Article  ADS  Google Scholar 

  22. Fennel, T. et al. Plasmon-enhanced electron acceleration in intense laser metal-cluster ineteractions. Phys. Rev. Lett. 98, 143401 (2007).

    Article  ADS  Google Scholar 

  23. Shu, J. et al. Elastic light scattering from nanoparticles by monochromatic vacuum-ultraviolet radiation. J. Chem. Phys. 124, 034707–034709 (2006).

    Article  ADS  Google Scholar 

  24. Bresch, H. et al. Elastic light scattering from free sub-micron particles in the soft X-ray regime. Faraday Discuss. 137, 389–402 (2008).

    Article  ADS  Google Scholar 

  25. Skopalova, E. et al. Pulse-length dependence of the anisotropy of laser-driven cluster explosions: Transition to the impulsive regime for pulses approaching the few-cycle limit. Phys. Rev. Lett. 104, 203401 (2010).

    Article  ADS  Google Scholar 

  26. Mathur, D. & Rajgara, F. A. Communication: Ionization and Coulomb explosion of xenon clusters by intense, few-cycle laser pulses. J. Chem. Phys. 133, 061101–061104.

  27. Springate, E., Aseyev, S. A., Zamith, S. & Vrakking, M. J. J. Electron kinetic energy measurements from laser irradiation of clusters. Phys. Rev. A 68, 053201 (2003).

    Article  ADS  Google Scholar 

  28. Kumarappan, V., Krishnamurthy, M. & Mathur, D. Asymmetric emission of high-energy electrons in the two-dimensional hydrodynamic expansion of large xenon clusters irradiated by intense laser fields. Phys. Rev. A 67, 043204 (2003).

    Article  ADS  Google Scholar 

  29. Fennel, T. et al. Laser-driven nonlinear cluster dynamics. Rev. Mod. Phys. 82, 1793–1842 (2010).

    Article  ADS  Google Scholar 

  30. Znakovskaya, I. et al. Attosecond control of electron dynamics in carbon monoxide. Phys. Rev. Lett. 103, 103002 (2009).

    Article  ADS  Google Scholar 

  31. Yang, B. et al. Intensity-dependent scattering rings in high order above-threshold ionization. Phys. Rev. Lett. 71, 3770–3773 (1993).

    Article  ADS  Google Scholar 

  32. Paulus, G. G., Nicklich, W., Xu, H., Lambropoulos, P. & Walther, H. Plateau in above threshold ionization spectra. Phys. Rev. Lett. 72, 2851–2854 (1994).

    Article  ADS  Google Scholar 

  33. Paulus, G. G. et al. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature 414, 182–184 (2001).

    Article  ADS  Google Scholar 

  34. Busuladžić, M., Gazibegović-Busuladžić, A. & Milošević, D. High-order above-threshold ionization in a laser field: Influence of the ionization potential on the high-energy cutoff. Laser Phys. 16, 289–293 (2006).

    Article  ADS  Google Scholar 

  35. Kling, M. F. et al. Imaging of carrier-envelope phase effects in above-threshold ionization with intense few-cycle laser fields. New J. Phys. 10, 025024 (2008).

    Article  ADS  Google Scholar 

  36. Jacoboni, C. & Reggiani, L. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55, 645–705 (1983).

    Article  ADS  Google Scholar 

  37. Salieres, P. et al. Feynman’s path-integral approach for intense-laser-atom interactions. Science 292, 902–905 (2001).

    Article  ADS  Google Scholar 

  38. Schenk, M., Krüger, M. & Hommelhoff, P. Strong-field above-threshold photoemission from sharp metal tips. Phys. Rev. Lett. 105, 257601 (2010).

    Article  ADS  Google Scholar 

  39. Liseykina, T. V., Pirner, S. & Bauer, D. Relativistic Attosecond electron bunches from laser-illuminated droplets. Phys. Rev. Lett. 104, 095002 (2010).

    Article  ADS  Google Scholar 

  40. Zaretsky, D. F., Korneev, Ph. & Becker, W. High-order harmonic generation in clusters irradiated by an infrared laser field of moderate intensity. J. Phys. B 43, 105402 (2010).

    Article  ADS  Google Scholar 

  41. Otobe, T., Yabana, K. & Iwata, J. I. First-principles calculation of the electron dynamics in crystalline SiO2 . J. Phys. Condens. Matter. 21, 064224 (2009).

    Article  ADS  Google Scholar 

  42. Durach, M., Rusina, A., Kling, M. F. & Stockman, M. I. Metallization of nanofilms in strong adiabatic electric fields. Phys. Rev. Lett. 105, 086803 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge W. Siu and K. J. Schafer for making their TSDE data available to us, M. Kübel for helping with the laser intensity calibration, and S. Watson for providing experimental support. We are grateful for support by the Max-Planck Society, the EU through a Marie-Curie Reintegration Grant and the ATTOFEL network, and by the DFG through the Emmy-Noether program, the Cluster of Excellence: Munich Center for Advanced Photonics (MAP), SPP1391 and SFB 450 as well as BMBF through the network PhoNa and grant nos: 05KS7KEA and 05K10KE2. M.F.K. acknowledges support from KAIN within the KSU-MPQ collaboration. T.F. and C.P. gratefully acknowledge financial support from the DFG within SFB 652/2. I.A. is grateful for support from the Higher Education Commission of Pakistan (HEC-DAAD 2006/11586). The work of M.I.S. and M.F.K. has been supported by grants from the Chemical Sciences, Biosciences and Geosciences Division of the Office of the Basic Energy Sciences, Office of Science, US Department of Energy. M.I.S. acknowledges support by BaCaTeC and the US–Israel Binational Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

E.R. and M.F.K. conceived the experiment; S.Z., J.P., E.A., I.Z. and B.L. performed the measurements; C.G. synthesized and characterized the SiO2 nanoparticles; S.Z., J.P., I.Z., M.J.J.V., M.I.S., F.K., E.R. and M.F.K. evaluated, analysed and interpreted the experimental data; F.S. and C.P. did FDTD calculations, and T.F. developed the theoretical model and performed the Monte Carlo trajectory calculations. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Thomas Fennel, Eckart Rühl or Matthias F. Kling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 862 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zherebtsov, S., Fennel, T., Plenge, J. et al. Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields. Nature Phys 7, 656–662 (2011). https://doi.org/10.1038/nphys1983

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1983

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing