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Role of electron physics in the development
of turbulent magnetic reconnection in
collisionless plasmas
W. Daughton1*, V. Roytershteyn1, H. Karimabadi2, L. Yin1, B. J. Albright1, B. Bergen1 and K. J. Bowers1

Magnetic reconnection releases energy explosively as field
lines break and reconnect in plasmas ranging from the
Earth’s magnetosphere to solar eruptions and astrophysical
applications. Collisionless kinetic simulations have shown that
this process involves both ion and electron kinetic-scale
features, with electron current layers forming nonlinearly
during the onset phase and playing an important role in
enabling field lines to break1–4. In larger two-dimensional
studies, these electron current layers become highly extended,
which can trigger the formation of secondary magnetic
islands5–10, but the influence of realistic three-dimensional
dynamics remains poorly understood. Here we show that, for
the most common type of reconnection layer with a finite guide
field, the three-dimensional evolution is dominated by the
formation and interaction of helical magnetic structures known
as flux ropes. In contrast to previous theories11, the majority of
flux ropes are produced by secondary instabilities within the
electron layers. New flux ropes spontaneously appear within
these layers, leading to a turbulent evolution where electron
physics plays a central role.

Thin current layers are the preferred locations for magnetic
reconnection to develop. The most common configuration in
nature is guide-field geometry, where the rotation of magnetic
field across the layer is less than 180◦. Present theoretical
ideas of how reconnection proceeds in these configurations are
deeply rooted in early analytical work11 that, if correct, would
imply a direct transition to three-dimensional (3D) turbulence
due to a broad spectrum of interacting tearing instabilities.
At the core of this idea is the notion that a spectrum of
tearing instabilities develops across the initial current sheet for
perturbations satisfying the local resonance condition. As these
modes grow, the resulting magnetic islands would overlap, leading
to stochastic magnetic-field lines and a turbulent evolution.
Recently, this type of scenario was proposed as a mechanism for
accelerating energetic particles during reconnection12. Similar ideas
for generating turbulence have been studied in fusion plasmas13
using resistive magnetohydrodynamics (MHD) and two-fluid14
models. Alternatively, other researchers have imposed turbulent
fluctuations within MHD models in an attempt to understand the
consequences15. In either case, these results are not applicable to
the highly collisionless environment of the magnetosphere, where
reconnection is initiated within kinetic ion-scale current layers.
The ability to study the self-consistent generation of turbulence
during magnetic reconnection with first-principles 3D simulations
has only become feasible in the past year.
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Figure 1 | Formation of primary flux ropes. a, At early time t�ci=40, the
tearing instability gives rise to flux ropes as illustrated by an isosurface of
the particle density coloured by the magnitude of the current density
(normalized by J0≡ cBx0/(4πλ)) along with sample magnetic-field lines
(yellow). b, Typical angles θ ≡ tan−1(ky/kx) for these ropes are directly
measured by examining Bz at the centre of the layer (z=0). c, The power
spectrum of |B̂z|2/B2

x0 is shown on a log scale. The solid white line
corresponds to the dominant angle in the spectrum.

The 3D simulations were carried out on two petascale supercom-
puters, Roadrunner and Kraken, using the kinetic particle-in-cell
codeVPIC (refs 16,17), which solves the relativistic Vlasov–Maxwell
system of equations. These capabilities have permitted a series
of simulations using over 1012 computational particles, nearly
103 larger than previous two-dimensional (2D) studies5. The case
described here is initialized with a Harris18 current sheet, with
magnetic field B=Bx0 tanh(z/λ)ex+By0ey where ex and ey are unit
vectors, λ=di is the initial half-thickness, di is an ion inertial length,
By0 = Bx0 is a uniform guide field, the ion to electron mass ratio is
mi/me = 100 and further details regarding the set-up are given in
the Methods section.

The simulation results in Fig. 1 reveal some dramatic differences
from the basic ideas discussed above. First, the concept of magnetic
islands in real 3D systems corresponds to extended flux ropes,
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which can interact in a variety of complex ways not possible in
2D models. Examples of such complexity were reported in recent
experiments involving small flux ropes produced with plasma
guns19,20. In contrast, the flux ropes shown in Fig. 1 are generated by
the tearing instability over a range of oblique angles θ <19◦, which is
substantially less than the expected θ <40◦ for these parameters11,21.
Indeed, these results demonstrate a few dominant modes that are
localized near the centre of the initial layer. The orientation of
these ropes can be directly measured by examining Bz near the
symmetry plane (z = 0) as shown in Fig. 1b, or by computing
the power spectrum of Bz over the simulation domain as shown
in Fig. 1c. The dominant modes correspond to kxde ≈ 0.08 with
θ ≡ tan−1(ky/kx)≈±14◦, where de is the electron skin depth. Some
of the interesting 3D features in Fig. 1 arise from the interaction of
these flux ropes, leading to a complex connectivity ofmagnetic-field
lines. However, the observed dynamics at this time is much simpler
than expected from previous theories.

Here we reconsider the linear kinetic theory and demonstrate
not only that the traditional asymptotic approaches fail dramatically
for the oblique tearing modes, but also that realistic predictions
can be obtained with numerical techniques. We consider a general
electromagnetic perturbation with wavevector k = kxex + kyey
that satisfies the resonance condition k · B = 0 at a location
zs =−λtanh−1[kyBy0/(kxBx0)]. The standard approach involves an
asymptotic matching between an outer MHD region with a kinetic
description within the resonance layer22,23. The solution for the
outer region features a discontinuity in the first derivative of the
perturbed magnetic field B̃z across the resonance layer, which
captures the destabilizing influence of magnetic shear that drives
tearing. However, previous theories11 used an incorrect equation
for the outer region, which does not recover MHD (ref. 24) for the
obliquemodes. Correcting for this error, we obtain
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where k ≡ |k| and B̃z is the perturbed magnetic field. The term
in brackets causes 1′ to increase for modes localized on the edge
of the layer tanh[zs/λ] = tan(θ)By0/Bx0, corresponding to oblique
angle θ ≡ tan−1(ky/kx). Using this solution for 1′ and neglecting
the electrostatic perturbation within the resonance layer results in
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For weak background density n̂b≡ nb/n0� 1, equation (1) implies
that the fastest-growing modes are oblique for By0/Bx0 > ((1−
kλ)/(1− kλ/2))1/2. Even before this condition is reached, modes
are destabilized for 1′ > 0, corresponding to angles up to
θmax= tan−1(Bx0/By0).
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Figure 2 | Theoretical predictions for oblique tearing instability. The
asymptotic theory (solid) from equation (1) is compared with the exact
Vlasov results25 (dashed) as a function of oblique angle θ = tan−1(ky/kx)
for the mass ratio mi/me and sheet thickness λ indicated. a–c, The growth
rate; d, the real frequency corresponding to c. Other parameters are held
fixed, kλ=0.4, By0= Bx0, Ti= Te and nb=0.3n0.

Even with the corrected 1′, these results are in clear disagree-
ment with Fig. 1, because the predicted range of angles θmax=±45◦
is much broader than actually observed. However, the asymptotic
theory is based on the ordering λ�ρi, whereas our focus is ion-scale
layers λ∼ ρi, where the onset of reconnection is thought to occur
in magnetospheric plasmas. To treat this regime rigorously, we
employ an exact numerical approach which solves the linearized
Vlasov–Maxwell system25,26. As shown in Fig. 2, these exact growth
rates are in good agreement with equation (1) for the limit of an
electron–positron plasma mi=me at all angles. At high mass ratio,
equation (1) also works reasonably well for modes with ky = 0, and
the agreement improves for thicker current sheets where the asymp-
totic theory is better justified. However, the asymptotic theory fails
dramatically at oblique angles, even for the thicker layers. The
exact Vlasov results predict that the unstable modes are limited to
θmax< 20◦ formi/me= 100, in good agreement with the simulation
results in Fig. 1. Since the range of unstable modes θmax < 15◦ in
a hydrogen plasma is quite similar, these results provide a nice
justification for the reduced mass ratio employed in this letter. The
real frequency in Fig. 2d is also a bit lower than expected from
equation (1), but the dramatic failure of the asymptotic theory is
not well understood. We note that the eigenfunction obtained for
oblique modes with mi/me� 1 is complex, with a rapid change in
phase across the ion resonance layer, a feature that is inconsistent
with the asymptotic matching.

For parameter regimes relevant to magnetospheric plasmas,
these results demonstrate that the spectrum of oblique tearing
modes is much narrower than previous expectations, which implies
that the generation of turbulence by overlapping magnetic islands
cannot proceed as previously thought. Although the narrow
spectrum of modes persists even for thicker current sheets λ= 5ρi,
it remains unclear if this holds for λ� ρi or stronger guide fields
By0�Bx0. However, over longer timescales these simulations reveal
a new scenario in which flux ropes can be generated through
secondary instabilities in the highly extended electron-scale current
sheets that form nonlinearly during the onset of reconnection.
These electron layers are a general feature of fast reconnection in
collisionless plasmas andplay a crucial role in breaking the frozen-in
condition1–4. In sufficiently large systems, previous 2D simulations
have demonstrated that these layers may become highly extended
and form secondary magnetic islands5–10. However, the manner
in which this can occur is vastly expanded in three dimensions.
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Figure 3 | Formation of secondary flux ropes. a,b, Slice of the current
density at y= 35di from the 3D simulation (a) compared with the
corresponding 2D result (b). c, The structure of the separatix layer at the
location indicated. Profiles in c are shown in the minimum-variance frame
(18◦ rotation about y followed by 52◦ rotation about z′). d, Fitting to a
Harris profile gives a half-thickness λ≈ 2de with guide field B′y ≈4.4B′x0,
resulting in the growth rate shown. e, The power spectrum |B̂z|2/B2

x0 for the
3D simulation on a log scale. The solid white line corresponds to the
dominant angle, whereas the dashed line is the simple estimate from c.

To illustrate this point, Fig. 3 compares a slice of the current density
between the 3D and a corresponding 2D case at time t�ci = 78.
Whereas the current layers along the separatrices are stable in two
dimensions, these layers are violently unstable in three dimensions
to the formation of flux ropes over a wide range of oblique angles
as shown in Fig. 3a, causing the current density to become highly
filamented and time dependent.

It seems that these dramatic differences between two and three
dimensions are due to tearing-type instabilities driven by the strong
magnetic shear across the electron-scale layers. To demonstrate this
mechanism, the profiles of the current density and magnetic field
are shown in Fig. 3c across the separatrix layer in the 2D simulation.
Fitting the profiles to a local Harris sheet corresponds to λ≈ 2de,
with a magnetic shear angle of 26◦ across the layer. The kinetic
theory26 for these parameters in Fig. 3d predicts γ /�ci ≈ 0.42 for
the fastest-growing modes with kde ≈ 0.2. At realistic hydrogen
mass ratio, the growth rate increases to γ /�ci ≈ 4.2 assuming
that the layer thickness remains on the scale ∼2de. The separatrix
current layer in Fig. 3b from the left boundary to the first X line
is approximately ∼220de long, which implies it should break up
into seven filaments, whereas there are four rope structures visible
in Fig. 3a. However, this separatrix layer actually begins to break
up at time t�ci ≈ 60, and originally forms six filaments. Thus
some of these structures have already coalesced by time t�ci ≈ 78
shown in Fig. 3. The angle of the modes is determined by k ·B= 0
near the centre of the electron layer at the time of break-up. The
sample profiles from the 2D case in Fig. 3b,c correspond to θ ≈ 52◦,
which is larger than the observed angles for these structures in
Fig. 3a. Again, exact agreement is not expected because filamentary
structures begin forming at earlier time in the 3D simulation. To
better quantify the structure of the magnetic-field perturbations,

¬0.5
0 0

0.5
1.0
1.5

¬0.5

0.5
1.0
1.5

20 40 60 80 100 0 20 40 60

y

z

x

y/dis/di

|B|

Bz

ne

|B|

Bz

ne

Line cut 1 Line cut 2

Line cut 2
Line cut 1

70d i2

0

4

J/J0

Secondary
flux ropes

Figure 4 |Development of turbulent reconnection. At late time t�ci=98,
the secondary flux ropes have grown to large amplitudes and interact over
a wide range of angles, giving rise to a turbulent evolution. The 3D structure
is illustrated by an isosurface of particle density coloured by current
density, along with selected magnetic-field lines (yellow). To illustrate the
observational signatures of these flux ropes, the normal magnetic field Bz,
total magnetic field |B| and electron density ne are plotted along
two trajectories.

the power spectrum of Bz is given in Fig. 3e. The form of the
spectrum is much broader in k space and indicates the presence of
highly anisotropic narrow structures in Bz , which are signatures of
the flux ropes. The peak power occurs for θ ≈±34◦, but there is
actually significant power out to θ ≈ 52◦ consistent with the above
estimate. On the basis of these results, it seems that the growth time,
wavelength and angle of these structures are consistent with tearing
instabilities in the electron layers.

The 3D structure of the turbulent reconnection is illustrated in
Fig. 4 at somewhat later time t�ci = 98, where the oblique flux
ropes have grown to larger amplitude and the helical magnetic-
field structure of the ropes is clearly visible. The simulation is
dominated by the interaction of highly anisotropic structures
across multiple scales, including electron-scale current sheets that
continually reform and break up into filaments, along with flux
ropes generated at these scales and quickly growing well above ion
scales. This turbulence is highly inhomogeneous and is continually
self-generated within the reconnection layer, which in the present
study is embedded in an otherwise laminar plasma.

These results have immediate implications for spacecraft obser-
vations of magnetic reconnection. In the solar wind, observational
studies of reconnection27 are based on an assumed, idealized, 2D
geometry with flux ropes centred in the reconnection exhaust. Nei-
ther of these assumptions is consistent with the structure observed
in Fig. 4. Our results indicate the need to expand the identification
criteria to cover themore complex behaviour reported here. Indeed,
whereas many examples of essentially 2D laminar exhausts have
been reported27, other cases indicate thatmore complicated features
are present28. However, essentially all observations of reconnection
in the solar wind are >1,000di downstream from an active X line,
and it remains unclear from our initial study how far downstream
this turbulencemight persist in these extremely large systems.

At themagnetopause, flux ropes are commonly referred to as flux
transfer events29 andmay play an important role in transport across
the magnetopause. However, their formation mechanism and
precise signatures remain under debate. Of the leading ideas29–31,
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these simulations are more consistent with the multiple-X-line
model30 rather than the single-X-line model31, but with important
differences. Observationally, the degree of asymmetry in the bipolar
magnetic field Bz is an important signature for identifying flux
transfer events and distinguishing between models. For example,
the nearly symmetric bipolar Bz signature in the bottom right
panel of Fig. 4 is generally consistent with the multiple-X-line
model32,33. However, a different trajectory through these same
structures (left panel) shows strong asymmetries in the bipolar
Bz , which researchers might interpret in terms of the single-X-
line model32,33. Clearly, the actual 3D structure in Fig. 4 is more
complicated than the simple models currently employed, which
implies thatmany flux ropesmay not have been properly recognized
in previous studies. These results are important for the upcoming
Magnetospheric Multiscale Mission, which is focused on the role
of electron physics in collisionless reconnection. The high-time-
resolution diagnostics on this mission will enable measurements
of the extended electron layers as they break up into flux ropes
near reconnection sites.

Methods
The simulation is initialized with a Harris18 current sheet and, to better mimic
a large open system, open boundary conditions5 are employed in the x and
z directions with periodic boundary conditions in the y direction. Following
previous 2D studies5, a weak 4% magnetic perturbation is included to set up a
large-scale flow pattern consistent with the open boundaries, while still enabling
linear modes to grow. The initial density profile is n(z)= n0sech2(z/λ)+nb,
where n0 is the central Harris density and nb is a uniform background density.
Lengths are normalized by the ion di = c/ωpi and electron de = c/ωpe inertial
scales, where ωps = (4πe2n0/ms)1/2 for each species s= i,e. The domain size
is Lx ×Ly ×Lz = 70di× 70di× 35di with 2,048× 2,048× 1,024 cells. The
simulation used 120 particles per cell for each species, corresponding to a
total of ∼ 1012 particles. Other parameters are λ= di, mi/me = 100, By0 = Bx0,
Ti = Te and ωpe/�ce = 2 where �ce = eBx0/(mec). To ensure that magnetic
flux enters the system in a controlled fashion, the open boundary conditions
were modified on the z boundaries to uniformly drive a prescribed inflow
Uz = 0.08VA[1− exp(−t/τ )] where VA = Bx0/

√
4πminb is the Alfvén velocity

and τ�ci = 80. The spectra in Figs 1 and 3 were computed with a discrete Fourier
transform of Bz in all three spatial directions. In both the z and x directions a
Blackman window34 was employed to suppress spurious features in the spectrum
from the non-periodic boundary conditions. Finally, the reduced spectrum
B̂z (kx ,ky ) corresponds to a sum over kz .
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