Article | Published:

General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology

Nature Physics volume 7, pages 406411 (2011) | Download Citation

Subjects

Abstract

The estimation of parameters characterizing dynamical processes is central to science and technology. The estimation error changes with the number N of resources employed in the experiment (which could quantify, for instance, the number of probes or the probing energy). Typically, it scales as . Quantum strategies may improve the precision, for noiseless processes, by an extra factor . For noisy processes, it is not known in general if and when this improvement can be achieved. Here we propose a general framework for obtaining attainable and useful lower bounds for the ultimate limit of precision in noisy systems. We apply this bound to lossy optical interferometry and atomic spectroscopy in the presence of dephasing, showing that it captures the main features of the transition from the 1/N to the behaviour as N increases, independently of the initial state of the probes, and even with use of adaptive feedback.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996).

  2. 2.

    , & A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325–2338 (2002).

  3. 3.

    , & Quantum-enhanced measurements: Beating the standard quantum limit. Science 306, 1330–1336 (2004).

  4. 4.

    , & Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).

  5. 5.

    & Phase estimation without a priori phase knowledge in the presence of loss. Phys. Rev. A 82, 053804 (2010).

  6. 6.

    , & Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state. Phys. Rev. A 83, 021804(R) (2011).

  7. 7.

    Quantum Detection and Estimation Theory (Academic, 1976).

  8. 8.

    Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, 1982).

  9. 9.

    Mathematical Methods of Statistics (Princeton Univ., 1946).

  10. 10.

    & Quantum Computation and Quantum Information (Cambridge Univ. Press, 2001).

  11. 11.

    States, Effects, and Operations: Fundamental Notions of Quantum Theory (Springer, 1983).

  12. 12.

    & Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994).

  13. 13.

    , & Generalized uncertainty relations: Theory, examples, and Lorentz invariance. Ann. Phys. (N.Y.) 247, 135–173 (1996).

  14. 14.

    , , & Generalized limits for single-parameter quantum estimation. Phys. Rev. Lett. 98, 090401 (2007).

  15. 15.

    & Optimal quantum estimation of loss in bosonic channels. Phys. Rev. Lett. 98, 160401 (2007).

  16. 16.

    et al. Optimal quantum phase estimation. Phys. Rev. Lett. 102, 040403 (2009).

  17. 17.

    et al. Quantum phase estimation with lossy interferometers. Phys. Rev. A 80, 013825 (2009).

  18. 18.

    & Optimal estimation of one-parameter quantum channels. J. Phys. A 39, 8487–8505 (2006).

  19. 19.

    et al. Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865–3868 (1997).

  20. 20.

    Correlated input-port, matter-wave interferometer: Quantum noise limits to the atom-laser gyroscope. Phys. Rev. A 57, 4736–4746 (1998).

  21. 21.

    et al. Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393–396 (2007).

  22. 22.

    & Qubit metrology and decoherence. Phys. Rev. A 76, 032111 (2007).

  23. 23.

    , & Entangled Fock states for robust quantum optical metrology, imaging, and sensing. Phys. Rev. A 78, 063828 (2008).

  24. 24.

    , & Quantum states made to measure. Nature Photon. 3, 673–676 (2009).

  25. 25.

    et al. Experimental quantum-enhanced estimation of a lossy phase shift. Nature Photon. 4, 357–360 (2010).

  26. 26.

    & A fibre bundle over manifolds of quantum channels and its application to quantum statistics. J. Phys. A 41, 255304 (2008).

  27. 27.

    Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett. 45, 75–79 (1980).

  28. 28.

    Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

  29. 29.

    Fundamental quantum limit in precision phase measurement. Phys. Rev. A 55, 2598–2609 (1997).

  30. 30.

    & Spin squeezing and decoherence limit in Ramsey spectroscopy. Phys. Rev. A 64, 052106 (2001).

  31. 31.

    , & Stability of atomic clocks based on entangled atoms. Phys. Rev. Lett. 92, 230801 (2004).

  32. 32.

    The ‘transition probability’ in the state space of a *-algebra. Rep. Math. Phys. 9, 273–279 (1976).

  33. 33.

    & Optimal states and almost optimal adaptive measurements for quantum interferometry. Phys. Rev. Lett. 85, 5098–5101 (2000).

  34. 34.

    Adaptive homodyne measurement of optical phase. Phys. Rev. Lett. 89, 133602 (2002).

  35. 35.

    & Machine learning for precise quantum measurement. Phys. Rev. Lett. 104, 063603 (2010).

Download references

Acknowledgements

The authors acknowledge financial support from the Brazilian funding agencies CNPq, CAPES and FAPERJ. This work was performed as part of the Brazilian National Institute of Science and Technology for Quantum Information.

Author information

Affiliations

  1. Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro (RJ), Brazil

    • B. M. Escher
    • , R. L. de Matos Filho
    •  & L. Davidovich

Authors

  1. Search for B. M. Escher in:

  2. Search for R. L. de Matos Filho in:

  3. Search for L. Davidovich in:

Contributions

All authors contributed substantially to this work.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to B. M. Escher.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys1958

Further reading