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A synthetic electric force acting on neutral atoms
Y-J. Lin1, R. L. Compton1, K. Jiménez-García1,2, W. D. Phillips1, J. V. Porto1 and I. B. Spielman1*

Electromagnetism is a simple example of a gauge theory where
the underlying potentials (the vector and scalar potentials)
are defined only up to a gauge choice. The vector potential
generates magnetic fields through its spatial variation and
electric fields through its time dependence1. Here, we report
experiments in which we have produced a synthetic gauge field.
The gauge field emerges only at low energy in a rubidium Bose–
Einstein condensate: the neutral atoms behave as charged
particles do in the presence of a homogeneous effective vector
potential2. We have generated a synthetic electric field through
the time dependence of an effective vector potential, a physical
consequence that emerges even though the vector potential
is spatially uniform.

Gauge theories play a central role in modern quantum physics.
In some cases, they can be viewed as emerging as the low-energy
description of a more complete theory3,4. Electromagnetism is the
best known gauge theory and its gauge fields are the ordinary scalar
and vector potentials. Magnetic fields arise only from spatial varia-
tions of the vector potential, whereas electric fields arise from both
time variations of the vector potential and gradients of the scalar
potential. These potentials are defined only towithin a gauge choice,
where for a charged particle the canonical momentum (the variable
canonically conjugate to position) and the mechanical momentum
(the mass times the velocity) are not equal. Our experiments2 have
realized a particular version5 of a class of proposals6–11 to generate
effective vector potentials for neutral atoms through interactions
with laser light, and have created synthetic magnetic fields12 impor-
tant for simulating charged condensed-matter systems with neutral
atoms13,14. Here we demonstrate the complementary phenomenon:
a synthetic electric field generated from a time-dependent effective
vector potential. Additionally, wemake independentmeasurements
of both the mechanical momentum and canonical momentum,
where the latter is usually not possible.

The electromagnetic vector potential A for a charged particle
appears in the Hamiltonian H = (pcan − qA)2/2m, where pcan is
the canonical momentum, q is the charge and m is the mass.
(pcan−qA=mv is the mechanical momentum for a particle moving
with velocity v.) We recently demonstrated a technique to engineer
Hamiltonians of this form for ultracold atoms, and prepared a
Bose–Einstein condensate (BEC) at rest with an effective vector
potential A= Ax x̂ constant in time and space2, corresponding to
E=B=0, whereE andB are the synthetic electric field and synthetic
magnetic field for neutral atoms, respectively. In ref. 12, we made
A depend on position, giving B = ∇ × A 6= 0 but E = 0. Here
we add time dependence to a spatially uniform vector potential
A(t )=A(t )x̂ , generating a synthetic electric field E(t )x̂=−∂A/∂t .
The resulting force is distinct from that arising from gradients of
scalar potentials φ(r), for example, from an external trapping po-
tential. A revealing analogue is that of an infinite solenoid of radius

1Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland, Gaithersburg, Maryland, 20899, USA,
2Departamento de Física, Centro de Investigación y EstudiosAvanzados del InstitutoPolitécnico Nacional, México D.F. 07360, México.
*e-mail: ian.spielman@nist.gov.

a b V
ector potential  q*A

*/hk
L

–Sy
nt

he
ti

c 
el

ec
tr

ic
 fi

el
d

  q
*E

*/
E L
k Ly

x

^

^

r0

B

A

¬6

¬5

¬4

¬3

¬2

¬1

0
0.80.60.40.20

Time (ms)
1.0¬0.2

0

2.0

1.5

1.0

0.5

Figure 1 | Schematic diagram of the electric field generated by a
time-varying vector potential. a, Emulated system, showing the electric
current flowing anticlockwise in the infinite solenoid (black coil) with radius
r0 and the real magnetic field B only inside the solenoid. The blue lines
represent the vector potential A. A charged particle (red dot) located far
from the coil experiences a nearly uniform A. b, Calculated time response
of the synthetic vector potential and electric field for neutral atoms in our
first measurement (see Fig. 3). The calculation includes the known
inductive response time of the bias field B0, which sets the detuning, and
the calibration of detuning to vector potential shown in Fig. 2d.

r0 as pictured in Fig. 1a: amagnetic fieldB=Bẑ exists only inside the
coil; however, a non-zero cylindrically symmetric vector potential
A=Br02φ̂/2r extends outside the coil. Far from the coil A is nearly
uniform, analogous to our uniform effective vector potential.When
the current is changed in a time interval 1t , B changes with it and
therefore A changes by 1A. A charged particle on the ŷ axis feels
an electric field −(∂A/∂t )x̂ during1t , leading to1p=−q1Ax̂ , a
change in themechanicalmomentumeven outside the solenoid.

We synthesize electromagnetic fields for neutral atoms by
illuminating a 87Rb BEC with two intersecting laser beams (Fig. 2a)
that couple together three atomic spin states within the electronic
ground state (Fig. 2b). The three new energy eigenstates, or
‘dressed states’, are superpositions of the uncoupled spin and
linear-momentum states and have modified energy–momentum
dispersion relations compared with those of uncoupled atoms.
The dressed atoms act as particles with a single well-defined
velocity v, which is the population-weighted average of all three
spin components.

The dispersion relation of the lowest-energy dressed state
changes near its minimum, from p2/2m to (p − pmin)2/2m∗
(Fig. 2c), where the minimum location pmin plays the role of
qA. In addition, the mass m is modified to an effective mass
m∗ > m, and both pmin and m∗ are under experimental control
(not independently). We identify pmin = q∗A∗, the product of an
effective charge q∗ and an effective vector potential A∗ for the
dressed neutral atoms. As we change A∗, we induce a synthetic
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Figure 2 | Experimental setup for synthetic electric fields. a, Physical
implementation indicating the two Raman laser beams incident on the BEC
(red arrows) and the physical bias magnetic field B0 (black arrow). The
blue arrow indicates the direction of the synthetic electric field E∗. b, The
three mF levels of the F= 1 ground-state manifold are shown as coupled by
the Raman beams. c, Dressed-state eigenenergies as a function of
canonical momentum for the realized coupling strength of h̄�R= 10.5EL at
a representative detuning h̄δ=−1EL (coloured curves). The grey curves
show the energies of the uncoupled states, and the red curve depicts the
lowest-energy dressed state in which we load the BEC. The black arrow
indicates the dressed BEC’s canonical momentum pcan= q∗A∗, where A∗ is
the vector potential. d, Vector potentials as measured from the
canonical momentum.

electric field E∗ = −∂A∗/∂t , and the dressed BEC responds as
d(m∗v)/dt =−∇φ(r)+q∗E∗, where v is the velocity of the dressed
atoms andm∗v=pcan−q∗A∗. Here,1(m∗v)=−q∗(Af

∗
−Ai

∗) is the
momentum imparted by q∗E∗.

We study the physical consequences of sudden temporal changes
of the effective vector potential for the dressed BEC. These changes
are always adiabatic such that the BEC remains in the same
dressed state. We measure the resulting change of the BEC’s
momentum, which is in complete quantitative agreement with our
calculations and constitutes the first observation of synthetic electric
fields for neutral atoms.

Our system (see Fig. 2a) consists of an F=1 87RbBECwith about
1.4×105 atoms initially at rest15,16; a small physical magnetic field
B0 Zeeman-shifts each of the spin states mF= 0,±1 by E0,±1. Here,
B0≈ 3.3×10−4 T and E−1≈−E+1≈ gµBB0�|E0|. The linear and
quadratic Zeeman shifts are h̄ωZ = (E−1−E+1)/2≈ h×2.32 MHz
and −h̄ε = E0 − (E−1 + E+1)/2 ≈ −h× 784 Hz. A pair of laser
beams with wavelength λ= 801 nm, intersecting at 90◦ at the BEC,
couples the mF states with strength �R. These Raman lasers differ
in frequency by 1ωL ≈ ωZ and we define the Raman detuning
as δ = 1ωL − ωZ. Here h̄�R ≈ 10EL and |h̄δ| < 60EL, where
EL = h̄2kL2/2m= h× 3.57 kHz and kL =

√
2π/λ are natural units

of energy and momentum.
When the atoms are rapidly moving or the Raman lasers are

far from resonance (kLv or δ� �R), the lasers hardly affect the
atoms. However, for slowly moving and nearly resonant atoms the
three uncoupled states transform into three new dressed states.
The spin and linear-momentum state |kx ,mF = 0〉 is coupled to
states |kx − 2kL,mF =+1〉 and |kx + 2kL,mF =−1〉, where h̄kx is
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Figure 3 | Change in momentum from the synthetic electric-field kick.
Three distinct sets of data were obtained by applying a synthetic electric
field by changing the vector potential from q∗Ai

∗ (between+2h̄kL and
−2h̄kL) to q∗Af

∗. Circles indicate data where the external trap was removed
right before the change in A∗, where q∗Af

∗
=±2h̄kL (− for red,+ for blue

symbols). The black crosses, more visible in the inset, show the amplitude
of canonical momentum oscillations when the trapping potential was left
on after the field kick. The standard deviations are also visible in the inset.
The grey line is a linear fit to the data (circles) yielding slope
−0.996±0.008, where the expected slope is−1.

the momentum of |mF = 0〉 along x̂ , and 2h̄kLx̂ is the momentum
difference between the two Raman beams. For each kx , the three
dressed states are the energy eigenstates in the presence of Raman
coupling h̄�R (see ref. 2), with energies Ej(kx) shown in Fig. 2c
(grey for uncoupled states, coloured for dressed states); we focus on
atoms in the lowest-energy dressed state. Here the atoms’ energy
(interaction and kinetic) is small compared with the≈ 10EL energy
difference between the curves; therefore, the atoms remain within
the lowest-energy dressed-state manifold5, without revealing their
spin and momentum components.

In the low-energy limit, E < EL, dressed atoms have a new
effective Hamiltonian formotion along x̂ ,Hx= (h̄kx−q∗Ax

∗)2/2m∗
(motion along ŷ and ẑ is unaffected); here we choose the gauge
where the momentum of the mF = 0 component h̄kx ≡ pcan is
the canonical momentum of the dressed state. The red curve
in Fig. 2c shows the eigenvalues of Hx for q∗Ax

∗ > 0, indicating
that at equilibrium pcan = pmin = q∗Ax

∗ (see ref. 2). Although this
dressed BEC is at rest (v = ∂Hx/∂ h̄kx = 0, zero group velocity), it is
composed of three bare spin states eachwith a differentmomentum,
among which the momentum of |mF = 0〉 is h̄kx = pcan. None of
its three bare spin components has zero momentum, whereas the
BEC’smomentum—theweighted average of the three—is zero.

We transfer the BEC initially in |mF = −1〉 into the lowest-
energy dressed state with A∗ = A∗x̂ (see ref. 2 for a complete
technical discussion of loading). At equilibrium, we measure
q∗A∗ = pcan, equal to the momentum of |mF = 0〉, by first
removing the coupling fields and trapping potentials and then
allowing the atoms to freely expand for a t = 20.1 ms time of
flight (TOF). Because the three components of the dressed state
{|kx ,mF= 0〉,|kx∓2kL,mF=±1〉} differ in momentum by ±h̄2kL,
they quickly separate. Further, a Stern–Gerlach field gradient
along ŷ separates the spin components. Figure 2d shows how the
measured and predicted A∗ depend on the detuning δ. With this
calibration, we use δ to control A∗(t ).

We realize a synthetic electric field E∗ by changing the effective
vector potential from an initial value Ai

∗ to a final value Af
∗. We

prepare our BEC at rest with A = Ai
∗x̂ , and make two types of

measurement of E∗. In the first, we remove the trapping potential
and then change A∗ by sweeping the detuning δ in 0.8ms, after
which the Raman coupling is turned off in 0.2ms. Thus, E∗ can
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Figure 4 | Oscillating atoms in the trapping potential after application of a
synthetic electric-field pulse. a,b, Left panels: the vector potential is
changed from q∗Ai

∗
=0.75h̄kL (red circles), 0.25h̄kL (black circles) and≈0

(green circles), all to q∗Af
∗
≈0, and from q∗Ai

∗
=0.75h̄kL to

q∗Af
∗
=0.35h̄kL (blue symbols). The measured momentum for all circles is

the canonical momentum pcan, and that for the squares is the mechanical
momentum mv. In b, pcan oscillates about q∗Af

∗
6=0 whereas mv oscillates

about zero. Right panels: Energy–momentum dispersion curves for
uncoupled states (grey) and dressed states (coloured). The arrows indicate
oscillations of pcan about q∗Af

∗ for atoms in the lowest-energy
dressed state.

accelerate the atoms unimpeded, and we measure the change of
the BEC’s velocity from zero. Figure 3 shows the momentum
1p imparted to the atoms by E∗ as a function of the vector
potential change q∗(Af

∗
−Ai

∗), denoted by red and blue symbols
for q∗Af

∗/h̄=−2kL,2kL, respectively (seeMethods for such a choice
of Af

∗). Owing to the large final detuning h̄δ =∓60EL, the final
atomic state is a nearly pure spin state, |mF=+1〉 for q∗Af

∗/h̄= 2kL
or |mF =−1〉 for q∗Af

∗/h̄=−2kL. For these undressed final states,
m∗ =m and 1p=m∗v =mv , equal to the change in mechanical
momentum. We carried out a linear fit 1p = Cq∗(Af

∗
− Ai

∗) to
the data and obtained C = −0.996(8), in good agreement with
the expected C =−1.

In the second measurement, we examined the time evolution
of atoms that remain trapped and strongly dressed after being
accelerated by E∗. We changed A∗ in 1t ≈ 0.3ms but left the
dressed BEC in the harmonic confining potential for a variable time
before the TOF. As the BEC oscillated in the trap, we monitored
the out-of-equilibrium canonical momentum pcan. It is our access
to the internal degrees of freedom—here projectively measuring
the composition of the Raman dressed state—that enables the
determination of pcan. Figure 4a shows the time evolution of pcan for
different Ai

∗ all for Af
∗
≈ 0; as expected, pcan oscillates about q∗Af

∗.
As 1t is small compared with the ≈25ms trap period, the change
of momentum is dominated by 1p = −q∗(Af

∗
−Ai

∗), where the
contribution from the trapping force is negligible. This translates
into an oscillation amplitude1p in both pcan andm∗v=pcan−q∗Af

∗

of dressed atoms; the solid crosses in Fig. 3 show the amplitude of
the sinusoidal oscillations in pcan versus Af

∗
−Ai

∗
≈−Ai

∗, proving
that E∗ has imparted the expectedmomentum kick.

We repeated the experiment with a non-zero q∗Af
∗/h̄≈ 0.35kL,

and observed, as expected, that the oscillations in pcan were offset
from zero (Fig. 4b). This illustrates that the observed quantity is
not the mechanical momentum mv , which should oscillate about
zero. We also measured mv , where v is the population-weighted
average velocity of all spin components (seeMethods); althoughmv
does indeed oscillate about zero, the oscillation amplitude is smaller
than that of pcan. Given the increased effective mass, m∗/m≈ 2.5,
the trap frequency νx along x̂ should be reduced by

√
m/m∗ from

that for undressed atoms, and the oscillation amplitude of mv
should be reduced bym/m∗= 0.39(1) from that of pcan. Our results
show that ν2x is reduced by a factor of 0.38(4), as expected, but the
momentum oscillation amplitude is reduced by 0.30(2), slightly less
than predicted (see Methods).

Here we have demonstrated the effects of spatially homogeneous
synthetic electric fields; however, this technique is generally
applicable to create spatially varying forces. Indeed, as the effective
vector potential A∗ is parameterized by the Raman detuning δ and
coupling �, it can be locally patterned through suitable spatially
inhomogeneous magnetic bias fields or vector light shifts. Our
capability of measuring both the canonical momentum and the
mechanical momentum mv is essential. The former characterizes
the effective vector potential for dressed spin states, and the latter
demonstrates that the dressed atom behaves as a usual particle
with an effective mass m∗ and a well-defined velocity v . For
atoms initially at rest, as the vector potential is changed with the
canonical momentum remaining fixed, the electric field results in
a mechanical momentum. For azimuthal vector potentials, such
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Figure 5 | Example TOF images of the dressed state. a, A dressed state in equilibrium, where pcan is equal to the vector potential q∗A∗. Here h̄δ=−1.7EL

and correspondingly q∗A∗=0.56h̄kL. Images of this type provide the calibration of A∗ versus detuning δ shown in Fig. 2d. b, A synthetic electric field E∗ is
applied to the atoms in a, by changing A∗ from the initial q∗Ai

∗
=0.56h̄kL to the final q∗Af

∗
=−2h̄kL; the atoms then acquire a momentum1p≈ 2.56h̄kL.

c, Out-of-equilibrium dressed state where the atoms oscillate in the trap after application of E∗ by changing A∗ from q∗Ai
∗
=0.75h̄kL to q∗Af

∗
≈0. Owing

to a larger density of the sample than those in a, scattering halos between |mF=0〉 and |mF= 1〉 are visible, indicating interaction during the TOF.
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electric-field-induced mechanical momenta can be used to identify
the superfluid fraction of cold-atom systems17. In addition, time-
varying, alternating vector potentials provide a unique way to drive
the trapped BEC. The BEC’s response is a measurement analogous
to the a.c. transport coefficients of condensed-matter systems.

Methods
Example TOF images of the dressed state. We measured the momentum of
each bare spin component of the dressed state after TOF, during part of which
a Stern–Gerlach gradient was applied. Figure 5a–c shows example images of the
data in Figs 2d, 3 and 4a, respectively. For the calibration of the vector potential
A∗ from the detuning δ, we use dressed states at equilibrium where pcan = q∗A∗
and measure pcan, which is defined as the momentum of |mF = 0〉. The mechanical
momentum mv is the population-weighted average momentum over all three
mF states, which is nearly zero at equilibrium. This is shown at h̄δ=−1.7EL and
q∗A∗ = 0.56h̄kL in Fig. 5a. As A∗ is changed from the initial value q∗Ai

∗
= 0.56h̄kL

to the final value q∗Af
∗
=−2h̄kL, immediately after the trap turnoff, the atoms

are accelerated unimpeded by the resulting synthetic electric field E∗; the final
atomic state becomes a nearly pure spin state, |mF =−1〉, with the momentum
1p=mv =−q∗(Af

∗
−Ai

∗)≈ 2.56h̄kL, as illustrated in Fig. 5b. When the induced
E∗ is applied to trapped atoms, the dressed state is driven out of equilibrium where
both pcan andmv oscillate with time (see Fig. 5c).

Dynamic change of effective vector potentials. In our first measurement of
synthetic electric fields, we observed the momentum imparted by the field kick
to the atoms, resulting from a change in the effective vector potential from an
arbitrarily chosen q∗Ai

∗ to q∗Af
∗
=±2h̄kL (see Fig. 3). In principle we could use

any Af
∗ and observe a momentum kick q∗(Ai

∗
−Af

∗); however, in general the
effective vector potential also depends on the strength of the Raman coupling �R.
As a result, extra synthetic electric fields typically appear when �R is adiabatically
turned off. There are three specific cases for which A∗ does not depend on�R: when
the detuning δ= 0 and δ→±∞. For the former case, only when |q∗Ai

∗
|< h̄kL is

there no extra electric force during the removal of �R, where the final atomic state
is |mF = 0〉. For |q∗Ai

∗
|> h̄kL, the final atomic state is |mF =±1〉 with an extra

momentum of ∓2h̄kL imparted. Thus in our experiment we changed the vector
potential from q∗Ai

∗ to q∗Af
∗
=±2h̄kL by changing the detuning from δi to a large

h̄δf=∓60EL; the subsequent turnoff of�R then exerted no extra forces.

Control of Raman detuning. In all of our experiments, we set the Raman detuning
δ away from resonance through small changes of the bias magnetic field, and hold
the 2.32MHz frequency difference between the Raman beams constant. Because all
temporal changes in δ lead to synthetic electric fields, bias magnetic field noise and
relative laser frequency noise can lead to motion in the trap or heating. We phase
locked the two Raman beams and observed no change in the heating, showing that
relative laser frequency noise is not important in our experiment. However, it is
very sensitive to ambient magnetic-field noise, here tied to the 60Hz line. This noise
gives rise to intractable dynamics of the canonical momentum of the dressed state,
where δ is held constant after the loading. We measured the field noise from the
state decomposition of a radiofrequency-dressed state (no Raman fields) nominally
on resonance and then feed-forward cancelled the field noise. This reduced the
∼0.2 µT root-mean-square magnetic-field noise at 60Hz by about a factor of
20, and the remaining root-mean-square field noise is ∼0.03 µT (including all
frequency components up to ≈5 kHz). All of our measurements were made by
locking to the 60Hz line before loading into the dressed state.

Momentum measurements of the dressed state. The Raman dressed state is a
superposition of spin and momentum components; its canonical momentum pcan
is themomentum of |mF=0〉. Experimentally, we fit themF=0 density distribution
after the TOF to a Thomas–Fermi profile18 and identify pcan as the centre of the
distribution. The mechanical momentum of the dressed state mv was measured
by a population-weighted average over all three spin states including every pixel
with discernible atoms in the image. This takes into account the modification of
the TOF density distribution for all mF states due to interactions during the TOF.
Although interactions can exchange momentum between spin states, the total

momentum is conserved. Our imaging sensitivity to themF=±1 atoms is the same
to within 5%, which is insufficient to explain the 0.30(2) reduction factor in the
oscillation amplitude of the mechanical momentum, smaller than the predicted
value, m/m∗ = 0.39(1).

Received 9 September 2010; accepted 15 February 2011;
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