Article | Published:

Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid

Nature Physics volume 7, pages 576580 (2011) | Download Citation

Subjects

Abstract

At timescales once deemed immeasurably small by Einstein, the random movement of Brownian particles in a liquid is expected to be replaced by ballistic motion. So far, an experimental verification of this prediction has been out of reach due to a lack of instrumentation fast and precise enough to capture this motion. Here we report the observation of the Brownian motion of a single particle in an optical trap with 75 MHz bandwidth and sub-ångström spatial precision and the determination of the particle’s velocity autocorrelation function. Our observation is the first measurement of ballistic Brownian motion of a particle in a liquid. The data are in excellent agreement with theoretical predictions taking into account the inertia of the particle and hydrodynamic memory effects.

  • Subscribe to Nature Physics for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    A brief account of microscopical observations made in the months of June, July and August, 1827 on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil. Mag. 4, 161–173 (1828).

  2. 2.

    Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322, 549–560 (1905).

  3. 3.

    & Brownian motion: A paradigm of soft matter and biological physics. Ann. Phys. 14, 20–50 (2005).

  4. 4.

    & The pricing of options and corporate liabilities. J. Political Econ. 81, 637–654 (1973).

  5. 5.

    Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann. Phys. 21, 756–780 (1906).

  6. 6.

    Zur Theorie der Brownschen Bewegung. Ann. Phys. 324, 371–381 (1906).

  7. 7.

    Sur la théorie du mouvement brownien. C.R. Acad. Sci. Paris 146, 530–533 (1908).

  8. 8.

    Correlations in the motion of atoms in liquid argon. Phys. Rev. 136, A404–A411 (1964).

  9. 9.

    Liquid structure and self-diffusion. J. Chem. Phys. 45, 2585–2592 (1964).

  10. 10.

    & Velocity autocorrelations for hard spheres. Phys. Rev. Lett. 18, 988–990 (1967).

  11. 11.

    & Decay of the velocity autocorrelation function. Phys. Rev. A 1, 18–21 (1970).

  12. 12.

    & Observation of a long-time tail in Brownian motion. J. Phys. A. 14, 3301–3327 (1981).

  13. 13.

    , , & Nondiffusive Brownian motion studied by diffusing-wave spectroscopy. Phys. Rev. Lett. 63, 1747–1750 (1989).

  14. 14.

    & Hydrodynamical theory of translational Brownian motion. Zh. Eksp. Teor. Fiz. 15, 258–263 (1945).

  15. 15.

    Application of the Langevin equation to fluid suspensions. J. Fluid Mech. 72, 499–511 (1975).

  16. 16.

    Theoretische Bemerkungen über die Brownsche Bewegung. Z. Elektrochem. 13, 41–42 (1907).

  17. 17.

    et al. Measurement of the translational and rotational Brownian motion of individual particles in a rarefied gas. Phys. Rev. Lett. 97, 230601 (2006).

  18. 18.

    , , & Measurement of the instantaneous velocity of a Brownian particle. Science 328, 1673–1675 (2010).

  19. 19.

    & On the theory of Brownian motion. Phys. Rev. 36, 823–841 (1930).

  20. 20.

    et al. Direct observation of nondiffusive motion of a Brownian particle. Phys. Rev. Lett. 95, 160601 (2005).

  21. 21.

    , , , & Anisotropic memory effects in colloidal diffusion. Phys. Rev. Lett. 100, 240604 (2008).

  22. 22.

    , , , & Scaling of transient hydrodynamic interactions in concentrated suspensions. Phys. Rev. Lett. 68, 2559–2562 (1992).

  23. 23.

    , & Observation of Brownian-motion on the timescale of hydrodynamic interactions. Phys. Rev. Lett. 70, 242–245 (1993).

  24. 24.

    , & Propagation of hydrodynamic interactions in colloidal suspensions. Phys. Rev. Lett. 88, 088302 (2002).

  25. 25.

    & Inertial effects in the response of viscous and viscoelastic fluids. Phys. Rev. Lett. 95, 208303 (2005).

  26. 26.

    , , & Short-time inertial response of viscoelastic fluids: Observation of vortex propagation. Phys. Rev. Lett. 95, 208302 (2005).

  27. 27.

    & Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

  28. 28.

    , , , & Development of a fast position-sensitive laser beam detector. Rev. Sci. Instrum 79, 105104 (2008).

  29. 29.

    & Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23, 7–9 (1998).

  30. 30.

    , , , & Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc. Res. Tech. 44, 378–386 (1999).

  31. 31.

    & Brownian particles in shear flow and harmonic potentials: A study of long-time tails. Phys. Rev. A 46, 1942–1950 (1992).

  32. 32.

    & Theory of the Brownian motion and the possibilities of using it for the study of the critical state of a pure substance. Sov. Phys. JETP 23 (4), 722–728 (1966).

  33. 33.

    & Compressibility effects in the hydrodynamic theory of Brownian motion. J. Fluid. Mech. 69, 21–25 (1975).

  34. 34.

    & Error estimates on average of correlated data. J. Chem. Phys. 91, 461–466 (1989).

Download references

Acknowledgements

This research was supported by NSF grants PHY-0647144 and DBI-0552094. S.J. and B.L. acknowledge support from the NCCR Nanoscale Science. M.G.R. acknowledges support from the Sid W. Richardson Foundation and the R. A. Welch Foundation, grant number F-1258. We thank V. Zyuzin for translating ref. 14.

Author information

Affiliations

  1. Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, Texas 78712, USA

    • Rongxin Huang
    • , Isaac Chavez
    • , Katja M. Taute
    • , Mark G. Raizen
    •  & Ernst-Ludwig Florin
  2. Institut de Physique de la Matière Complexe, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

    • Branimir Lukić
    •  & Sylvia Jeney

Authors

  1. Search for Rongxin Huang in:

  2. Search for Isaac Chavez in:

  3. Search for Katja M. Taute in:

  4. Search for Branimir Lukić in:

  5. Search for Sylvia Jeney in:

  6. Search for Mark G. Raizen in:

  7. Search for Ernst-Ludwig Florin in:

Contributions

R.H. and E-L.F. conceived the experiment. B.L. and S.J. contributed to the planning of the early experiments and provided an early version of the VACF analysis software. I.C., R.H., E-L.F. and M.G.R. developed, built and characterized the fast position detector, and incorporated it into the set-up. R.H. carried out the experiments in part assisted by I.C. R.H. analysed the data. R.H., K.M.T. and E-L.F. interpreted the data and wrote the manuscript. All authors discussed and commented on the final version of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Ernst-Ludwig Florin.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys1953

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.