Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Random telegraph photosignals in a microwave-exposed two-dimensional electron system

Abstract

The magneto-resistance of high-mobility two-dimensional electron systems exposed to microwaves exhibits radiation-induced oscillations with some minima approaching zero within experimental accuracy. Consensus has been reached that they originate from disorder-assisted indirect optical transitions and a non-equilibrium population of the electronic states. Both mechanisms capture the hall-marks of the observed oscillations except for the appearance of zero resistance. Theory has predicted that in the minima the resistivity can become negative. Then a homogeneous system turns unstable and current domains with large internal Hall electric fields pointing in opposite directions spontaneously form to produce zero resistance. Direct evidence for such domains has remained elusive. Here we introduce time as an unexplored parameter. Probing internal Hall voltages reveals random telegraph signals in the zero-resistance regime. They provide compelling evidence for spontaneous switching between two different distributions of the electric field, which is attributed to two distinct current domain configurations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time dependence of the microwave-induced photovoltages.
Figure 2: Magnetic-field dependence of the characteristics of the telegraph signals.
Figure 5: Influence of a d.c. current imposed through the source and drain contacts on the telegraph signals.
Figure 3: Temperature dependence of the telegraph signals.
Figure 4: Dependence of the telegraph signals on the microwave power.

Similar content being viewed by others

References

  1. Zudov, M. A., Du, R. R., Simmons, J. A. & Reno, J. L. Shubnikov–de Haas-like oscillations in millimeter wave photoconductivity in a high-mobility two-dimensional electron gas. Phys. Rev. B 64, 201311 (2001).

    Article  ADS  Google Scholar 

  2. Ye, P. D. et al. Giant microwave photoresistance of two-dimensional electron gas. Appl. Phys. Lett. 79, 2193–2195 (2001).

    Article  ADS  Google Scholar 

  3. Mani, R. G. et al. Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures. Nature 420, 646–650 (2002).

    Article  ADS  Google Scholar 

  4. Zudov, M. A., Du, R. R., Pfeiffer, L. N. & West, K. W. Evidence for a new dissipationless effect in 2D electronic transport. Phys. Rev. Lett. 90, 046807 (2003).

    Article  ADS  Google Scholar 

  5. Andreev, A. V., Aleiner, I. L. & Millis, A. J. Dynamical symmetry breaking as the origin of the zero-d.c.-resistance state in an a.c.-driven system. Phys. Rev. Lett. 91, 056803 (2003).

    Article  ADS  Google Scholar 

  6. Inarrea, J. & Platero, G. Theoretical approach to microwave-radiation-induced zero-resistance states in 2D electron systems. Phys. Rev. Lett. 94, 016806 (2005).

    Article  ADS  Google Scholar 

  7. Auerbach, A., Finkler, A. I., Halperin, B. I. & Yacoby, A. Steady states of a microwave-irradiated quantum-Hall gas. Phys. Rev. Lett. 94, 196801 (2005).

    Article  ADS  Google Scholar 

  8. Alicea, J., Balents, L., Fisher, M. P. A., Paramekanti, A. & Radzihovsky, L. Transition to zero resistance in a two-dimensional electron gas driven with microwaves. Phys. Rev. B 71, 235322 (2005).

    Article  ADS  Google Scholar 

  9. Finkler, I., Halperin, B.I., Auerbach, A. & Yacoby, A. Domain patterns in the microwave-induced zero-resistance state. J. Stat. Phys. 125, 1093–1107 (2006).

    Article  ADS  Google Scholar 

  10. Finkler, I. G. & Halperin, B. I. Microwave-induced zero-resistance states are not necessarily static. Phys. Rev. B 79, 085315 (2009).

    Article  ADS  Google Scholar 

  11. Ryzhii, V. I. Photoconductivity characteristics in thin films subjected to crossed electric and magnetic fields. Phiz. Tverd. Tela 11, 2577–2579 (1969); Sov. Phys.—Solid State 11, 2078–2080 (1970).

    Google Scholar 

  12. Ryzhii, V. I., Suris, R. A. & Shchamkhalova, B. S. Photoconductivity of a two-dimensional electron gas in a strong magnetic field. Fiz. Tekh. Poluprov. 20, 2078–2083 (1986); Sov. Phys. Semicond. 20, 1299–1302 (1987).

    Google Scholar 

  13. Durst, A. C., Sachdev, S., Read, N. & Girvin, S. M. Radiation-induced magnetoresistance oscillations in a 2D electron gas. Phys. Rev. Lett. 91, 086803 (2003).

    Article  ADS  Google Scholar 

  14. Vavilov, M. G. & Aleiner, I. L Magnetotransport in a two-dimensional electron gas at large filling factors. Phys. Rev. B 69, 035303 (2004).

    Article  ADS  Google Scholar 

  15. Dorozhkin, S. I. Giant magnetoresistance oscillations caused by cyclotron resonance harmonics. Pis. Zh. Eksp. Teor. Fiz. 77, 681–685 (2003); JETP Lett. 77, 577–581 (2003).

    Google Scholar 

  16. Dmitriev, I. A., Vavilov, M. G., Aleiner, I. L., Mirlin, A. D. & Polyakov, D. G. Theory of microwave-induced oscillations in the magnetoconductivity of a two-dimensional electron gas. Phys. Rev. B 71, 115316 (2005).

    Article  ADS  Google Scholar 

  17. Dmitriev, I. A., Mirlin, A. D. & Polyakov, D. G. Microwave photoconductivity of a two-dimensional electron gas: Mechanisms and their interplay at high radiation power. Phys. Rev. B 75, 245320 (2007).

    Article  ADS  Google Scholar 

  18. Dmitriev, I. A., Khodas, M., Mirlin, A. D., Polyakov, D. G. & Vavilov, M. G. Mechanisms of the microwave photoconductivity in two-dimensional electron systems with mixed disorder. Phys. Rev. B 80, 165327 (2009).

    Article  ADS  Google Scholar 

  19. Zakharov, A. L. Instability in a semiconductor amplifier with negative effective carrier mass. Zh. Eksp.Teor. Fiz. 38, 665–667 (1960);Sov. Phys. JETP 11, 478–479 (1960).

    Google Scholar 

  20. Gunn, J. B. Microwave oscillations of current in III–V semiconductors. Solid State Commun. 1, 88–91 (1963).

    Article  ADS  Google Scholar 

  21. Zudov, M. A., Du, R. R., Pfeiffer, L. N. & West, K. W. Bichromatic microwave photoresistance of a two-dimensional electron system. Phys. Rev. Lett. 96, 236804 (2006).

    Article  ADS  Google Scholar 

  22. Durst, A. C. Resistance is futile. Nature 442, 752–753 (2006).

    Article  ADS  Google Scholar 

  23. Inarrea, J. & Platero, G. From zero resistance states to absolute negative conductivity in microwave irradiated two-dimensional electron systems. Appl. Phys. Lett. 89, 052109 (2006).

    Article  ADS  Google Scholar 

  24. Willett, R. L., Pfeiffer, L. N. & West, K. W. Evidence for current-flow anomalies in the irradiated 2D electron system at small magnetic fields. Phys. Rev. Lett. 93, 026804 (2004).

    Article  ADS  Google Scholar 

  25. Zudov, M. A., Du, R. R., Pfeiffer, L. N. & West, K. W. Multiphoton processes in microwave photoresistance of two-dimensional electron systems. Phys. Rev. B 73, 041303 (2006).

    Article  ADS  Google Scholar 

  26. Bykov, A. A., Islamov, D. R., Nomokonov, D. V. & Bakarov, A. K. Absolute negative resistance in a nonequilibrium two-dimensional electron system in a strong magnetic field. Pis. Zh. Eksp. Teor. Fiz. 86, 695–698 (2007); JETP Lett. 86, 608–611 (2007).

    Google Scholar 

  27. Bykov, A. A. Spatial inhomogeneity of the microwave-induced electronic states with zero conductivity in Corbino disks at high filling factors. Pis. Zh. Eksp. Teor. Fiz. 91, 390–394 (2010); JETP Lett. 91, 361–364 (2010).

    Google Scholar 

  28. Dorozhkin, S. I. et al. Photocurrent and photovoltage oscillations in the two-dimensional electron system: Enhancement and suppression of built-in electric fields. Phys. Rev. Lett. 102, 036602 (2009).

    Article  ADS  Google Scholar 

  29. Dmitriev, I. A., Dorozhkin, S. I. & Mirlin, A. D. Theory of microwave-induced photocurrent and photovoltage magneto-oscillations in a spatially nonuniform two-dimensional electron gas. Phys. Rev. B 80, 125418 (2009).

    Article  ADS  Google Scholar 

  30. Auerbach, A. & Pai, G. V. Nonlinear current of strongly irradiated quantum Hall gas. Phys. Rev. B 76, 205318 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the German Ministry of Science and Education (BMBF) and (S.I.D.) the Russian foundation for basic research.

Author information

Authors and Affiliations

Authors

Contributions

S.I.D. and J.H.S. contributed to all aspects of the work. L.P. and K.W. provided samples. K.v.K. commented on the manuscript.

Corresponding author

Correspondence to J. H. Smet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 747 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorozhkin, S., Pfeiffer, L., West, K. et al. Random telegraph photosignals in a microwave-exposed two-dimensional electron system. Nature Phys 7, 336–341 (2011). https://doi.org/10.1038/nphys1895

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1895

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing