Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simulations of efficient Raman amplification into the multipetawatt regime

Abstract

Contemporary high-power laser systems make use of solid-state laser technology to reach petawatt pulse powers. The breakdown threshold for optical components in these systems, however, demands metre-scale beams. Raman amplification of laser beams promises a breakthrough by the use of much smaller amplifying media, that is, millimetre-diameter plasmas, but so far only 60 GW peak powers have been obtained in the laboratory, far short of the desired multipetawatt regime. Here we show, through the first large-scale multidimensional particle-in-cell simulations of this process, that multipetawatt peak powers can be reached, but only in a narrow parameter window dictated by the growth of plasma instabilities. Raman amplification promises reduced cost and complexity of intense lasers, enabling much greater access to higher-intensity regimes for scientific and industrial applications. Furthermore, we show that this process scales to short wavelengths, enabling compression of X-ray free-electron laser pulses to attosecond duration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustrations of various processes occurring during Raman amplification.
Figure 2: Comparison of Raman amplification for two different parameter configurations, to demonstrate the importance of controlling long-wavelength laser–plasma instabilities.
Figure 3: Influence of the plasma density and the pump intensity on energy-transfer efficiency (determined by the pump RBS growth rate) and instabilities (determined by the growth rates of pump RFS and probe filamentation).
Figure 4: Effect of various parameters on the RFS and modulational instabilities, which both affect the longitudinal envelope of the growing probe.
Figure 5: Comparison of filamentation in two and three dimensions.

Similar content being viewed by others

References

  1. Shvets, G. et al. Superradiant amplification of an ultrashort laser pulse in a plasma by a counterpropagating pump. Phys. Rev. Lett. 81, 4879–4882 (1998).

    Article  ADS  Google Scholar 

  2. Malkin, V. M. et al. Fast compression of laser beams to highly overcritical powers. Phys. Rev. Lett. 82, 4448–4451 (1999).

    Article  ADS  Google Scholar 

  3. Forslund, D. W., Kindel, J. M. & Lindman, E. L. Theory of stimulated scattering processes in laser-irradiated plasmas. Phys. Fluids 18, 1002–1016 (1975).

    Article  ADS  Google Scholar 

  4. Malkin, V. M. et al. Detuned Raman amplification of short laser pulses in plasma. Phys. Rev. Lett. 84, 1208–1211 (2000).

    Article  ADS  Google Scholar 

  5. Malkin, V. M. et al. Ultra-powerful compact amplifiers for short laser pulses. Phys. Plasmas 7, 2232–2240 (2000).

    Article  ADS  Google Scholar 

  6. Malkin, V. M. et al. Stimulated Raman scattering of rapidly amplified short laser pulses. Phys. Rev. Lett. 85, 4068–4071 (2000).

    Article  ADS  Google Scholar 

  7. Tsidulko, Yu. A. et al. Suppression of superluminous precursors in high-power backward Raman amplifiers. Phys. Rev. Lett. 88, 235004 (2002).

    Article  ADS  Google Scholar 

  8. Ersfeld, B. & Jaroszynski, D. A. Superradiant linear amplification in plasma using a chirped pump pulse. Phys. Rev. Lett. 95, 165002 (2005).

    Article  ADS  Google Scholar 

  9. Malkin, V. M. & Fisch, N. J. Quasitransient regimes of backward Raman amplification of intense X-ray pulses. Phys. Rev. E 80, 046409 (2009).

    Article  ADS  Google Scholar 

  10. Lee, H. J. et al. Simulation of laser pulse amplification in a plasma by a counterpropagating wave. IEEE Trans. Plasma Sci. 30, 40–41 (2002).

    Article  ADS  Google Scholar 

  11. Mardahl, P. et al. Intense laser pulse amplification using Raman backscatter in plasma channels. Phys. Lett. A 296, 109–116 (2002).

    Article  ADS  Google Scholar 

  12. Fraiman, G. M. et al. Robustness of laser phase fronts in backward Raman amplifiers. Phys. Plasmas 9, 3617–3624 (2002).

    Article  ADS  Google Scholar 

  13. Balakin, A. A. et al. Noise suppression and enhanced focusability in plasma Raman amplifier with multi-frequency pump. Phys. Plasmas 10, 4856–4864 (2003).

    Article  ADS  Google Scholar 

  14. Clark, D. S. & Fisch, N. J. Operating regime for a backward Raman laser amplifier in preformed plasma. Phys. Plasmas 10, 3363–3370 (2003).

    Article  ADS  Google Scholar 

  15. Hur, M. S. et al. Slowly varying envelope kinetic simulations of pulse amplification by Raman backscattering. Phys. Plasmas 11, 5204–5211 (2004).

    Article  ADS  Google Scholar 

  16. Clark, D. S. & Fisch, N. J. Raman laser amplification in preformed and ionizing plasmas. Laser Part. Beams 23, 101–106 (2005).

    Article  ADS  Google Scholar 

  17. Balakin, A. A. et al. Three-dimensional simulation of backward Raman amplification. IEEE Trans. Plasma Sci. 33, 488–489 (2005).

    Article  ADS  Google Scholar 

  18. Hur, M. S. et al. Electron kinetic effects on Raman backscatter in plasmas. Phys. Rev. Lett. 95, 115003 (2005).

    Article  ADS  Google Scholar 

  19. Andreev, A. A. et al. Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime. Phys. Plasmas 13, 053110 (2006).

    Article  ADS  Google Scholar 

  20. Ping, Y. et al. Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma. Phys. Rev. Lett. 92, 175007 (2004).

    Article  ADS  Google Scholar 

  21. Dreher, M. et al. Observation of superradiant amplification of ultrashort laser pulses in a plasma. Phys. Rev. Lett. 93, 095001 (2004).

    Article  ADS  Google Scholar 

  22. Cheng, W. et al. Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses. Phys. Rev. Lett. 94, 045003 (2005).

    Article  ADS  Google Scholar 

  23. Kirkwood, R. K. et al. Amplification of an ultrashort pulse laser by stimulated Raman scattering of a 1 ns pulse in a low density plasma. Phys. Plasmas 14, 113109 (2007).

    Article  ADS  Google Scholar 

  24. Ren, J. et al. A new method for generating ultraintense and ultrashort laser pulses. Nature Phys. 3, 732–736 (2007).

    Article  ADS  Google Scholar 

  25. Fisch, N. J. & Malkin, V. M. Generation of ultrahigh intensity laser pulses. Phys. Plasmas 10, 2056–2063 (2003).

    Article  ADS  Google Scholar 

  26. Malkin, V. M. & Fisch, N. J. Manipulating ultraintense laser pulses in plasmas. Phys. Plasmas 12, 044507 (2005).

    Article  ADS  Google Scholar 

  27. Malkin, V. M., Fisch, N. J. & Wurtele, J. S. Compression of powerful X-ray pulses to attosecond durations by stimuated Raman backscattering in plasmas. Phys. Rev. E 75, 026404 (2007).

    Article  ADS  Google Scholar 

  28. Ross, I. N. et al. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers. Opt. Commun. 144, 125–133 (1997).

    Article  ADS  Google Scholar 

  29. Checkhlov, O. et al. Development of petawatt laser amplification systems at the central laser facility. Proc. SPIE 6735, 67350J (2007).

    Article  Google Scholar 

  30. Max, C. E., Arons, J. & Langdon, A. B. Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209–212 (1974).

    Article  ADS  Google Scholar 

  31. Sprangle, P., Tang, C-M. & Esarey, E. Relativistic self-focusing of short-pulse radiation beams in plasmas. IEEE Trans. Plasma Sci. 15, 145–153 (1987).

    Article  ADS  Google Scholar 

  32. Kaw, P., Schmidt, G. & Wilcox, T. Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluids 16, 1522–1525 (1973).

    Article  ADS  Google Scholar 

  33. Verboncoeur, J. P., Langdon, A. B. & Gladd, N. T. An object-oriented electromagnetic PIC code. Comput. Phys. Commun. 87, 199–211 (1995).

    Article  ADS  Google Scholar 

  34. Fonseca, R. A., Silva, L. O. & Hemker, R. G. et al. OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators. Lect. Not. Comput. Sci. 2331, 342–351 (2002).

    Article  Google Scholar 

  35. Malkin, V. M. & Fisch, N. J. Quasitransient regimes of backward Raman amplification of intense X-ray pulses. Phys. Rev. E 80, 046409 (2009).

    Article  ADS  Google Scholar 

  36. Rosenbluth, M. N. & Liu, C. S. Excitation of plasma waves by two laser beams. Phys. Rev. Lett. 29, 701–705 (1972).

    Article  ADS  Google Scholar 

  37. Vu, H. X., Dubois, D. F. & Bezzerides, B. Transient enhancement and detuning of laser-driven parametric instabilities by particle trapping. Phys. Rev. Lett. 86, 4306–4309 (2001).

    Article  ADS  Google Scholar 

  38. Vu, H. X., Dubois, D. F. & Bezzerides, B. Kinetic inflation of stimulated Raman backscatter in regimes of high linear Landau damping. Phys. Plasmas 9, 1745–1763 (2002).

    Article  ADS  Google Scholar 

  39. Strozzi, D. J. et al. Kinetic enhancement of Raman backscatter, and electron acoustic Thomson scatter. Phys. Plasmas 14, 013104 (2007).

    Article  ADS  Google Scholar 

  40. Bilato, R. & Brambilla, M. On the nature of ‘collisionless’ Landau damping. Commun. Nonlinear Sci. Numer. Simul. 13, 18–23 (2008).

    Article  ADS  Google Scholar 

  41. Lauterborn, W., Kurz, T. & Wiesenfeldt, M. Coherent Optics: Fundamentals and Applications (Springer, 1999).

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the STFC Accelerator Science and Technology Centre, by the STFC Centre for Fundamental Physics, by EPSRC through grant EP/G04239X/1 and by FCT (Portugal) through grant PTDC/FIS/66823/2006. We would like to thank W. Mori for discussions, the Plasma Theory and Simulation Group of UC Berkeley for the use of XOOPIC and the OSIRIS consortium for the use of OSIRIS. Simulations were carried out on the Scarf-Lexicon Cluster (STFC RAL), the IST Cluster (IST Lisbon) and the Hoffman Cluster (UCLA).

Author information

Authors and Affiliations

Authors

Contributions

R.M.G.M.T.: simulations, data analysis and manuscript preparation. F.F.: simulations, data analysis and analytic theory. R.B.: data analysis and analytic theory. R.A.F.: code and algorithm development. L.O.S.: data analysis and manuscript preparation. R.A.C.: physics of Raman amplification and interpretation of simulations. P.A.N.: data analysis and manuscript preparation.

Corresponding author

Correspondence to P. A. Norreys.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trines, R., Fiúza, F., Bingham, R. et al. Simulations of efficient Raman amplification into the multipetawatt regime. Nature Phys 7, 87–92 (2011). https://doi.org/10.1038/nphys1793

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1793

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing