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Optical one-way quantum computing with a
simulated valence-bond solid
Rainer Kaltenbaek1*†, Jonathan Lavoie1†, Bei Zeng2,3, Stephen D. Bartlett4 and Kevin J. Resch1*
One-way quantum computation proceeds by sequentially
measuring individual spins in an entangled many-spin resource
state1. It remains a challenge, however, to efficiently produce
such resources. Is it possible to reduce the task of their
production to simply cooling a quantum many-body system
to its ground state? Cluster states, the canonical resource
for one-way quantum computing, do not naturally occur as
ground states of physical systems2,3, leading to a significant
effort to identify alternatives that do appear as ground states
in spin lattices4–8. An appealing candidate is a valence-bond-
solid state described by Affleck, Kennedy, Lieb and Tasaki9

(AKLT). It is the unique, gapped ground state for a two-body
Hamiltonian on a spin-1 chain, and can be used as a resource
for one-way quantum computing4–7. Here, we experimentally
generate a photonic AKLT state and use it to implement single-
qubit quantum logic gates.

In the circuit model of quantum computation, information
is carried by two-level systems called qubits. The computation
proceeds dynamically using unitary single-qubit logic gates and
multiple-qubit entangling gates. Apart from these entangling
gates the qubits are fully isolated from each other. Computations
in the one-way model, on the other hand, are carried out
using single-qubit measurements on a strongly correlated,
that is, entangled, resource state. The one-way model has
led to some of the highest estimated error thresholds for
fault-tolerant quantum computation10, and to a series of
experimental demonstrations of quantum logic gates11–16,
wherein the technical requirements can be much simpler than
for the circuit model. This is particularly true of optical
implementations, where the resource requirements for one-way
quantum computing are significantly lower17, and the predicted
error thresholds significantly higher18, than for any other approach
to quantum computation.

As qubits in the one-way model are not isolated but rather
interact strongly with each other, this approach lends itself
more naturally to implementations in condensed-matter systems.
However, out of the vast variety of strongly coupled quantum
many-body systems, can we find one that has a ground state we can
use as a resource for quantum computing? That seems unlikely if
this ground state is to be the cluster state, because the cluster state is
not the ground state of a strongly coupledmany-body systemwith a
Hamiltonian consisting of two-body interactions2,3. As a result, the
search for alternative resource states has attracted a lot of interest
recently. Although up to now little is known about the requirements
potential resource states for the one-way model have to meet, and
although most states are in fact useless for this task19, a handful of
alternative states have been identified4–8. All of these states can be
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described in the framework of matrix product states or projected
entangled pair states4–6,20.

A promising candidate is the ground state of a spinmodel studied
by Affleck, Kennedy, Lieb and Tasaki9 (AKLT). This valence-bond-
solid state (see Fig. 1a) appears as the unique gapped ground state of
a rotationally invariant nearest-neighbour two-body Hamiltonian
on a spin-1 chain. The AKLT state possesses diverging localizable
entanglement length21 and, remarkably, can serve as a resource
for one-way quantum computation4,6,7,22. As the Hamiltonian is
frustration free, that is, the ground state minimizes the energy of
each local term of the Hamiltonian, measurements in the course
of the computation leave the remaining particles in their ground
state. Operations leaving the computational subspace are penalized
by the energy gap protecting the AKLT state. Universal quantum
computation can be achieved through dynamical coupling of
several AKLT states, where each can be regarded as ‘quantum
computational wires’4,6,7,22.

Quantum computation with AKLT states is different from
computing with cluster states in a number of ways. The elementary
physical units are spin-1 systems (qutrits) instead of spin-1/2
systems (qubits), although qubits are still encoded as ‘logical’
information. Adaptive measurements allow non-Pauli operations,
including Clifford gates, to be carried out. Single-qubit rotations
can be carried out around any Cartesian axis. These operations
are probabilistic, rather than deterministic, and succeed with
probability 2/3. When an operation fails, it carries out a heralded
logical-identity operation (up to a known Pauli error). The
operation can then be reattempted on the next qutrit until it
succeeds. Combinations of such rotations allow the implementation
of arbitrary single-qubit quantum logic gates.

Although a number of one-dimensional spin chains are
well described by the AKLT Hamiltonian, most prominently
Ni(C2H8N2)2NO2(ClO4) (ref. 23), up to now experimental tech-
niques do not allow the single-spin measurements necessary for
one-way quantum computation. One of the fundamental and most
appealing motivations for quantum computing is the possibility
to simulate aspects of quantum systems that cannot directly be
studied24. As the AKLT state is a valence-bond-solid state (see
Fig. 1a), we can simulate it using a chain of spin-1/2 singlet states,
for example polarization-entangled photon pairs, where adjoining
particles of neighbouring pairs are projected on the symmetric
triplet subspace (see Fig. 1b). Although this approach does not allow
for an analysis of the dynamics of the corresponding solid-state
system, it does allow us to directly produce the AKLT state and use
it for one-way quantum computation.

Here, we experimentally demonstrate the generation of pho-
tonic AKLT states and their application for one-way quantum
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Figure 1 | AKLT states. a, The AKLT state9 is the ground state of a spin-1 chain with a two-body nearest-neighbour interaction. It is the unique ground state
if the boundary conditions are chosen accordingly. The figure illustrates a common way to set these boundary conditions: by coupling the spin-1 particles to
spin-1/2 particles on either end of the chain9,27. The AKLT state, as a valence-bond solid, can be represented by a chain of virtual spin-1/2 particles in
singlet states where adjoining qubits of neighbouring pairs are projected on the triplet subspace, that is, the subspace symmetric with respect to swapping
of the two qubits. b, One can simulate an AKLT state with a chain of sources producing singlet states and projecting pairs of particles on the
triplet subspace.

computation. We produce two singlet states, |ψ−〉 = (|HV〉 −
|VH〉)/

√
2, in four distinct spatial modes using spontaneous para-

metric down conversion. Here, |H〉 and |V〉 denote horizontal
and vertical polarization. From these two singlets we create an
AKLT state consisting of two boundary spin-1/2 systems and one
spin-1 system. The spin-1 system is realized using a biphoton25,26,
symmetrized by projecting a pair of photons into the triplet sub-
space. This projection is achieved by overlapping these two photons
at a beam splitter and by postselecting those cases where both
photons exit through the same output mode of the beam splitter.
The resulting biphoton represents our qutrit. Qutrit measurements
are carried out probabilistically by splitting the photons on a
beam splitter and measuring the individual photons in polarization
analysers. More details can be found in the Methods section and
the Supplementary Information. For the qutrit analyser settings,
see Supplementary Table S1. The experimental set-up is shown in
Supplementary Figure S1. A discussion of the theoretical aspects of
the simulation of AKLT states using quantum optics and their use
in one-way quantumcomputation is given in a separate paper27.

We shall use the states |−1〉,|0〉 and |1〉 to denote a basis in a spin-
1 system. In our case these states correspond to the biphoton states
(1/
√
2)a†

Ha
†
H|vac〉,a

†
Ha

†
V|vac〉 and (1/

√
2)a†

Va
†
V|vac〉, respectively,

where both photons are in the same spatial mode, |vac〉 is the
vacuum state and a†

H and a†
V are photon creation operators. Using

this notation, the AKLT state for our qubit–qutrit–qubit system is
|ψAKLT〉 = (1/

√
6)|H,0,V〉+ (1/

√
6)|V,0,H〉− (1/

√
3)|H,1,H〉−

(1/
√
3)|V,−1,V〉. Here, the tensor-product structure of our state

is according to physical systems in separate spatial modes, that
is, photon–biphoton–photon. To verify the faithful production of
the AKLT state in our experiment, we carry out quantum-state
tomography and use a maximum-likelihood technique based on
a semi-definite-programming algorithm to reconstruct the density
matrix shown in Fig. 2. For a detailed list of the states measured
and of the corresponding counts, see Supplementary Tables S2 and
S3. The fidelity28 of the reconstructed maximum-likelihood density
matrix with the ideal AKLT state is (87.4±0.4)%. The uncertainty
in that value is determined by using a Monte Carlo simulation with
420 iterations on the observed counts.

To experimentally demonstrate the use of AKLT states for
quantum computation, we realize single-qubit rotations of several
input states around the x̂, ŷ and ẑ axes of the Bloch sphere.
As in one-way quantum computing the quantum information
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Figure 2 | Tomographic reconstruction of our photonic AKLT state.
a,b, The real (a) and imaginary (b) parts of the density matrix
reconstructed from an over-complete set of qubit–qutrit–qubit tomography
measurements (for the measurement settings and the counts measured,
see Supplementary Tables S2 and S3). The fidelity with the ideal AKLT state
is (87.1±0.4)%.
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Table 1 | Qutrit measurement bases and Pauli corrections.

Rotations
plus minus id

State Correction State Correction State Correction

Rx(θ) cosθ/2|y〉+ isinθ/2|z〉 XZ isinθ/2|y〉+cosθ/2|z〉 Z |x〉 X
Ry(θ) cosθ/2|z〉+sinθ/2|x〉 Z −sinθ/2|z〉+cosθ/2|x〉 X |y〉 XZ
Rz(θ) cosθ/2|x〉+ isinθ/2|y〉 X isinθ/2|x〉+cosθ/2|y〉 XZ |z〉 Z

Single-qubit rotations Rx(θ),Ry(θ) or Rz(θ) around the respective Cartesian axes x̂, ŷ or ẑ are realized by a projective qutrit measurement. Each qutrit measurement has three possible outcomes (plus,
minus and id) and can be described by projecting onto the corresponding qutrit states. We provide the state for each rotation axis and qutrit measurement outcome, and we specify the Pauli correction
(X,XZ=−iY or Z) required for each measurement outcome. The qutrit basis states |x〉, |y〉 and |z〉 are defined as 1/2(a†

Ha
†
H−a

†
Va

†
V)|vac〉,1/2(a†

Ha
†
H+a

†
Va

†
V)|vac〉 and a†

Ha
†
V|vac〉, respectively.

Bl
oc

h 
co

or
di

na
te

s
Bl

oc
h 

co
or

di
na

te
s

Bl
oc

h 
co

or
di

na
te

s

1.0

¬1.0

0.5

¬0.5

0

1.0

¬1.0

0.5

¬0.5

0

1.0

¬1.0

0.5

¬0.5

0

0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π

Angle of rotation (rad)

0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π

Angle of rotation (rad)

0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π

Angle of rotation (rad)

Rx data Rx ideal Rx predicted
Ry predicted
Rz predicted

Ry ideal
Rz ideal

Ry data
Rz data

z

∨

y

∨

y

∨

y

∨

x

∨

z

∨

x

∨

x

∨

a d

e

f

b

c
z

∨

Figure 3 | Measurement results for single-qubit rotations. a–c, The coordinates of the Bloch vectors of the reconstructed output density matrices for
rotations of a logical input state |H〉 around the x̂, ŷ and ẑ axes. Note that the results shown are for the plus outcome of the qutrit measurement, and that
we have applied the necessary Pauli corrections to the reconstructed density matrices for all plots shown in the figure. Error bars are 1 s.d. calculated from
Monte Carlo simulation. The solid and dashed lines indicate the theoretical expectations given the ideal AKLT state and the tomographically reconstructed
AKLT state (see Fig. 2), respectively. d–f, The Bloch vectors of the measured (and Pauli-corrected) density matrices corresponding to the Bloch coordinates
shown in a–c for the rotation angles 0,π/4 and π/2.
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Table 2 | Single-qubit logic gate fidelities.

Gate fidelities for logical input |H〉

Outcomes
Rx Ry Rz

ρth ρexp ρth ρexp ρth ρexp

Plus 0.91±0.04 0.98±0.02 0.90±0.05 0.98±0.02 0.90±0.03 0.98±0.02
Minus 0.93±0.03 0.97±0.03 0.91±0.03 0.99±0.01 0.92±0.04 0.97±0.02
Id 0.90±0.03 0.98±0.02 0.92±0.02 0.9993+0.0004

−0.0089 0.97±0.02 0.987+0.006
−0.026

Gate fidelities averaged over all input states

Outcomes
Rx Ry Rz

ρth ρexp ρth ρexp ρth ρexp

All 0.92±0.04 0.97±0.02 0.91±0.04 0.99+0.01
−0.02 0.92±0.04 0.97±0.02

We compare the experimentally determined output density matrices with the ones expected given an ideal AKLT state, ρth , and given the AKLT state measured in our set-up, ρexp . The upper part of the
table shows the fidelities for a logical input state |H〉. For the plus and minus outcomes the fidelities are averaged over all rotation angles; for the id outcome we carried out one measurement per rotation
axis. The lower part shows the corresponding fidelities averaged over all logical input states prepared and over all three qutrit measurement outcomes. See Supplementary Information for more detailed
results and a description of how the errors were calculated.

is not encoded locally in one particle but rather in the state
of the remaining particles of the entangled resource state, it is
referred to as ‘logical’ information. The logical input state, |ψ〉,
of a computation is prepared by projecting the first boundary
qubit onto the state |ψ⊥〉, such that 〈ψ |ψ⊥〉 = 0. Here, we
demonstrate rotations Rx(θ),Ry(θ) or Rz(θ) of the logical input
state |ψ〉 = |H〉 by an angle θ around the respective Cartesian
axis (experimental results for other input states are given in
the Supplementary Information). We do so for a set of ten
angles θ = {0,π/8,π/4,3π/8,π/2,3π/4,π,5π/4,3π/2,7π/4}.
Each rotation is realized by carrying out a specific measurement
on the qutrit in our AKLT state. Each qutrit measurement has
three possible outcomes, which we denote as plus, minus and id.
Each outcome occurs with probability 1/3 and corresponds to
a projection of the qutrit on one out of three orthogonal qutrit
states as indicated in Table 1. In one-way quantum computing
with cluster states, measurement outcomes can lead to known
Pauli errors1,6,7, which can be corrected. Pauli corrections are also
necessary in AKLT-based schemes, and in Table 1we indicate which
Pauli correction is needed for a given qutrit measurement outcome.
The outcomes plus and minus signal a successful rotation, and
the outcome id signals the logical identity, that is, no rotation
has been carried out, only a Pauli error. As a result, a successful
rotation is achieved with probability 2/3. For θ = 0, every outcome
heralds the logical identity (modulo a Pauli correction). This
can be used to teleport logical information along the wire, for
example to a position where the wire is coupled to another, or
to the read-out position. We reconstruct the density matrix of
each computational outcome by carrying out a tomographically
over-complete set of measurements on the last qubit, using the
measurement settings: |H〉,|V〉,|±〉= (|H〉±|V〉)/

√
2,|R〉= (|H〉+

i|V〉)/
√
2, and |L〉= (|H〉− i|V〉)/

√
2.

Figure 3 shows the measurement results for the single-qubit
rotations of our logical input state |H〉 for plus outcomes of
the qutrit measurement. In Fig. 3a–c we give the coordinates
of the Bloch vectors corresponding to the reconstructed single-
qubit density matrices, and we compare them to the theoretical
expectations. Figure 3d–f shows the Bloch-sphere representation
of some of these vectors. Note, that we Pauli-corrected the
reconstructed density matrices. In Table 2 we provide the fidelities
of the reconstructed density matrices with the corresponding ideal
rotations as well as the averaged fidelities for the complete set of
logical input states prepared. From the count rates observed for all
input states and rotations, we calculate the average frequencies for
the occurrence of each of the three qutrit measurement outcomes

to be 0.34± 0.03,0.30± 0.05 and 0.36± 0.04 for the plus, the
minus and the id outcome, respectively, comparing well to the
expected probability of 1/3 for each outcome. The output fidelities
for each input state and rotation are provided in Supplementary
Tables S4–S6. On average that fidelity is (92±4)%, demonstrating
the high quality of our single-qubit quantum logic gates using a
photonic AKLT state.

We have experimentally demonstrated one-way quantum
computation using a new resource, the AKLT state, implementing
single-qubit rotations around any coordinate axis. Quantum
computation using AKLT, instead of cluster states, promises to
combine the inherent advantages of the one-way model with
resources that occur naturally in physical systems. Our scheme
for creating AKLT states uses entangled states and linear optics
similar in requirements to optical implementations using cluster
states17. In contrast to some other optical approaches to one-
way quantum computation11,12, our scheme is phase insensitive
and achieves significantly higher experimental fidelities. Our
implementation of a valence-bond-solid state is a realization of
a projected entangled pair state20. Such states offer a promising
framework for understanding the properties of entangled states that
make them useful computational resources4–6,8. Generalizations of
our approach might allow simulating other classes of resource
states with linear optics and their study for quantum computing.
Future challenges will be to find efficient methods of coupling
quantum wires, to study solid-state compounds with ground
states that can be used as computational resources and to
implement techniques to address such systems on a single-
particle level. Ideally, this and related research will lead to
implementations in solid-state architectures, allowing one to tap
the power of one-way quantum computation while taking full
advantage of the appealing characteristics of novel resource states
such as AKLT.

Methods
The light source in our experiment is a titanium:sapphire femtosecond laser,
centred at 790 nm with 10 nm full-width-at-half-maximum (FWHM) bandwidth,
2.9W average output power and 80MHz repetition rate. Second-harmonic
generation in a 2-mm-thick bismuth borate crystal yields a beam of 780mWpower,
centred at 395 nm, with about 1.5 nm FWHMbandwidth.With this beamwe pump
two separate type-I spontaneous parametric down-conversion sources29,30, each a
pair of 1-mm-thick β-barium borate crystals. Longitudinal and transverse walk-off
occurring in the down-conversion crystals is compensated with a combination of
birefringent crystals (α-barium borate, quartz and bismuth borate, see ref. 30 and
Supplementary Information). All photons pass through 3 nm FWHM bandwidth
filters. In each source, the polarization of the photons in one mode is measured
directly at the source; the photons in the other modes are coupled into single-mode
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fibres and sent to a quantum interferometer and analyser set-up. The input modes
of the interferometer are overlapped at a 50:50 beam splitter, where, depending
on the two-photon state, two-photon interference leads to both photons leaving
through the same or through different beam-splitter output modes31. By measuring
a two-photon event in one output mode of the beam splitter, the biphoton is
projected onto a qutrit subspace. This mode is input in a qutrit analyser, where
we implement qutrit projections by probabilistically separating the two photons
at another beam splitter and carrying out appropriate polarization measurements
on each photon25,26. For a more detailed discussion of the set-up and the qutrit
projections, see Supplementary Information.
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