Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Challenges in protein-folding simulations

Abstract

Experimental studies of protein folding are hampered by the fact that only low-resolution structural data can be obtained with sufficient temporal resolution. Molecular dynamics simulations offer a complementary approach, providing extremely high-resolution spatial and temporal data on folding processes. However, at present, such simulations are limited in several respects, including the inability of molecular dynamics force fields to completely reproduce the true potential energy surfaces of proteins, the need for simulations to extend to the millisecond timescale for the folding of many proteins and the difficulty inherent in obtaining sufficient sampling to properly characterize the extremely heterogeneous folding processes and then analysing those data efficiently. We review recent progress in the simulation of three common model systems for protein folding, and discuss how advances in technology and theory are allowing protein-folding simulations to address their present shortcomings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cartoon representations of proteins discussed in this Review.
Figure 2: Representative snapshots of the trajectory followed by villin headpiece from the pre-folded intermediate to the native state.
Figure 3: Projections of a villin-folding trajectory (corresponding to WT-FOLD1 in Fig. 2) onto two-dimensional surfaces.
Figure 4: Directionality of hydrogen bonding in folding simulations.

Similar content being viewed by others

References

  1. Alder, B. J. & Wainwright, T. E. Studies in molecular dynamics. I. General method. J. Chem. Phys. 31, 459 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  2. Adcock, S. A. & McCammon, J. A. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem. Rev. 106, 1589–1615 (2006).

    Article  Google Scholar 

  3. Moult, J., Fidelis, K., Kryshtafovych, A., Rost, B. & Tramontano, A. Critical assessment of methods of protein structure prediction —round VIII. Proteins 77 (suppl. 9), 1–4 (2009).

    Article  Google Scholar 

  4. Das, R. et al. Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins 69 (suppl. 8), 118–128 (2007).

    Article  Google Scholar 

  5. Hubner, I. A., Deeds, E. J. & Shakhnovich, E. I. Understanding ensemble protein folding at atomic detail. Proc. Natl Acad. Sci. USA 103, 17747–17752 (2006).

    Article  ADS  Google Scholar 

  6. Yang, J. S., Wallin, S. & Shakhnovich, E. I. Universality and diversity of folding mechanics for three-helix bundle proteins. Proc. Natl Acad. Sci. USA 105, 895–900 (2008).

    Article  ADS  Google Scholar 

  7. Onuchic, J. N. & Wolynes, P. G. Theory of protein folding. Curr. Opin. Struct. Biol. 14, 70–75 (2004).

    Article  Google Scholar 

  8. Neidigh, J. W., Fesinmeyer, R. M. & Andersen, N. H. Designing a 20-residue protein. Nature Struct. Biol. 9, 425–430 (2002).

    Article  Google Scholar 

  9. Simmerling, C., Strockbine, B. & Roitberg, A. E. All-atom structure prediction and folding simulations of a stable protein. J. Am. Chem. Soc. 124, 11258–11259 (2002).

    Article  Google Scholar 

  10. Snow, C. D., Zagrovic, B. & Pande, V. S. The Trp cage: Folding kinetics and unfolded state topology via molecular dynamics simulations. J. Am. Chem. Soc. 124, 14548–14549 (2002).

    Article  Google Scholar 

  11. Chowdhury, S., Lee, M. C., Xiong, G. & Duan, Y. Ab initio folding simulation of the Trp-cage mini-protein approaches NMR resolution. J. Mol. Biol. 327, 711–717 (2003).

    Article  Google Scholar 

  12. Pitera, J. W. & Swope, W. Understanding folding and design: Replica-exchange simulations of Trp-cage miniproteins. Proc. Natl Acad. Sci. USA 100, 7587–7592 (2003).

    Article  ADS  Google Scholar 

  13. Zhou, R. Free energy landscape of protein folding in water: Explicit vs. implicit solvent. Proteins 53, 148–161 (2003).

    Article  Google Scholar 

  14. Paschek, D., Hempel, S. & García, A. E. Computing the stability diagram of the Trp-cage miniprotein. Proc. Natl Acad. Sci. USA 105, 17754–17759 (2008).

    Article  ADS  Google Scholar 

  15. Paschek, D., Nymeyer, H. & García, A. E. Replica exchange simulation of reversible folding/unfolding of the Trp-cage miniprotein in explicit solvent: On the structure and possible role of internal water. J. Struct. Biol. 157, 524–533 (2007).

    Article  Google Scholar 

  16. Juraszek, J. & Bolhuis, P. G. Sampling the multiple folding mechanisms of Trp-cage in explicit solvent. Proc. Natl Acad. Sci. USA 103, 15859–15864 (2006).

    Article  ADS  Google Scholar 

  17. Juraszek, J. & Bolhuis, P. G. Rate constant and reaction coordinate of Trp-cage folding in explicit water. Biophys. J. 95, 4246–4257 (2008).

    Article  ADS  Google Scholar 

  18. Day, R., Paschek, D. & García, A. E. Microsecond simulations of the folding/unfolding thermodynamics of the Trp-cage miniprotein. Proteins 78, 1889–1899 (2010).

    Google Scholar 

  19. McKnight, C. J., Doering, D. S., Matsudaira, P. T. & Kim, P. S. A thermostable 35-residue subdomain within villin headpiece. J. Mol. Biol. 260, 126–134 (1996).

    Article  Google Scholar 

  20. Kubelka, J., Eaton, W. A. & Hofrichter, J. Experimental tests of villin subdomain folding simulations. J. Mol. Biol. 329, 625–630 (2003).

    Article  Google Scholar 

  21. Bunagan, M. R., Gao, J., Kelly, J. W. & Gai, F. Probing the folding transition state structure of the villin headpiece subdomain via side chain and backbone mutagenesis. J. Am. Chem. Soc. 131, 7470–7476 (2009).

    Article  Google Scholar 

  22. Kubelka, J., Chiu, T. K., Davies, D. R., Eaton, W. A. & Hofrichter, J. Sub-microsecond protein folding. J. Mol. Biol. 359, 546–553 (2006).

    Article  Google Scholar 

  23. Buscaglia, M., Kubelka, J., Eaton, W. A. & Hofrichter, J. Determination of ultrafast protein folding rates from loop formation dynamics. J. Mol. Biol. 347, 657–664 (2005).

    Article  Google Scholar 

  24. Wang, M. et al. Dynamic NMR line-shape analysis demonstrates that the villin headpiece subdomain folds on the microsecond time scale. J. Am. Chem. Soc. 125, 6032–6033 (2003).

    Article  Google Scholar 

  25. Duan, Y. & Kollman, P. A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282, 740–744 (1998).

    Article  ADS  Google Scholar 

  26. Zagrovic, B., Snow, C. D., Shirts, M. R. & Pande, V. S. Simulation of folding of a small alpha-helical protein in atomistic detail using worldwide-distributed computing. J. Mol. Biol. 323, 927–937 (2002).

    Article  Google Scholar 

  27. Jayachandran, G., Vishal, V. & Pande, V. S. Using massively parallel simulation and Markovian models to study protein folding: Examining the dynamics of the villin headpiece. J. Chem. Phys. 124, 164902 (2006).

    Article  ADS  Google Scholar 

  28. Lei, H. & Duan, Y. Two-stage folding of HP-35 from ab initio simulations. J. Mol. Biol. 370, 196–206 (2007).

    Article  Google Scholar 

  29. Lei, H., Wu, C., Liu, H. & Duan, Y. Folding free-energy landscape of villin headpiece subdomain from molecular dynamics simulations. Proc. Natl Acad. Sci. USA 104, 4925–4930 (2007).

    Article  ADS  Google Scholar 

  30. Lei, H., Deng, X., Wang, Z. & Duan, Y. The fast-folding HP35 double mutant has a substantially reduced primary folding free energy barrier. J. Chem. Phys. 129, 155104 (2008).

    Article  ADS  Google Scholar 

  31. Ensign, D. L., Kasson, P. M. & Pande, V. S. Heterogeneity even at the speed limit of folding: Large-scale molecular dynamics study of a fast-folding variant of the villin headpiece. J. Mol. Biol. 374, 806–816 (2007).

    Article  Google Scholar 

  32. Freddolino, P. L. & Schulten, K. Common structural transitions in explicit-solvent simulations of villin headpiece folding. Biophys. J. 97, 2338–2347 (2009).

    Article  ADS  Google Scholar 

  33. Hu, K-N., Yau, W-M. & Tycko, R. Detection of a transient intermediate in a rapid protein folding process by solid-state nuclear magnetic resonance. J. Am. Chem. Soc. 132, 24–25 (2010).

    Article  Google Scholar 

  34. Jäger, M., Nguyen, H., Crane, J. C., Kelly, J. W. & Gruebele, M. The folding mechanism of a beta-sheet: The WW domain. J. Mol. Biol. 311, 373–393 (2001).

    Article  Google Scholar 

  35. Jäger, M. et al. Structure-function-folding relationship in a WW domain. Proc. Natl Acad. Sci. USA 103, 10648–10653 (2006).

    Article  ADS  Google Scholar 

  36. Cecconi, F., Guardiani, C. & Livi, R. Testing simplified proteins models of the hPin1 WW domain. Biophys. J. 91, 694–704 (2006).

    Article  ADS  Google Scholar 

  37. Karanicolas, J. & Brooks, C. L. Improved Gō-like models demonstrate the robustness of protein folding mechanisms towards non-native interactions. J. Mol. Biol. 334, 309–325 (2003).

    Article  Google Scholar 

  38. Luo, Z., Ding, J. & Zhou, Y. Temperature-dependent folding pathways of Pin1 WW domain: An all-atom molecular dynamics simulation of a Gō model. Biophys. J. 93, 2152–2161 (2007).

    Article  ADS  Google Scholar 

  39. Freddolino, P. L., Liu, F., Gruebele, M. & Schulten, K. Ten-microsecond MD simulation of a fast-folding WW domain. Biophys. J. 94, L75–L77 (2008).

    Article  Google Scholar 

  40. Freddolino, P. L., Park, S., Roux, B. & Schulten, K. Force field bias in protein folding simulations. Biophys. J. 96, 3772–3780 (2009).

    Article  ADS  Google Scholar 

  41. Ensign, D. L. & Pande, V. S. The Fip35 WW domain folds with structural and mechanistic heterogeneity in molecular dynamics simulations. Biophys. J. 96, L53–L55 (2009).

    Article  Google Scholar 

  42. Patel, S. & Brooks, C. L. III Fluctuating charge force fields: Recent developments and applications from small molecules to macromolecular biological systems. Mol. Simul. 32, 231–249 (2006).

    Article  MATH  Google Scholar 

  43. Harder, E. et al. Atomic level anisotropy in the electrostatic modeling of lone pairs for a polarizable force field based on the classical Drude oscillator. J. Chem. Theor. Comput. 2, 1587–1597 (2006).

    Article  Google Scholar 

  44. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theor. Comput. 4, 435–447 (2008).

    Article  Google Scholar 

  45. Bowers, K. J. et al. Proc. of the ACM/IEEE Conference on Supercomputing (SC06) (IEEE Computer Society, 2006).

    Google Scholar 

  46. Beberg, A. L., Ensign, D. L., Jayachandran, G., Khaliq, S. & Pande, V. S. 2009 IEEE International Symposium on Parallel & Distributed Processing (IEEE Computer Society, 2009).

    Google Scholar 

  47. Shaw, D. E. et al. SC ’09: Proc. of the Conference on High Performance Computing Networking, Storage and Analysis, 1–11 (IEEE Computer Society, 2009).

    Google Scholar 

  48. Stone, J. E. et al. Accelerating molecular modeling applications with graphics processors. J. Comput. Chem. 28, 2618–2640 (2007).

    Article  Google Scholar 

  49. Elsen, E. et al. SC06 Proc. (IEEE Computer Society, 2006).

    Google Scholar 

  50. Ufimtsev, I. S. & Martinez, T. J. Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theor. Comput. 5, 2619–2628 (2009).

    Article  Google Scholar 

  51. Harvey, M. J., Giupponi, G. & Fabritiis, G. D. Acemd: Accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theor. Comput. 5, 1632–1639 (2009).

    Article  Google Scholar 

  52. Friedrichs, M. S. et al. Accelerating molecular dynamic simulation on graphics processing units. J. Comput. Chem. 30, 864–872 (2009).

    Article  Google Scholar 

  53. Anderson, J. A., Lorenz, C. D. & Travesset, A. General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Chem. Phys. 227, 5342–5359 (2008).

    MATH  Google Scholar 

  54. Phillips, J. C., Stone, J. E. & Schulten, K. SC ’08: Proc. of the 2008 ACM/IEEE Conference on Supercomputing (IEEE Press, 2008).

    Google Scholar 

  55. Sugita, Y. & Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999).

    Article  ADS  Google Scholar 

  56. García, A. E. & Onuchic, J. N. Folding a protein in a computer: An atomic description of the folding/unfolding of protein A. Proc. Natl Acad. Sci. USA 100, 13898–13903 (2003).

    Article  ADS  Google Scholar 

  57. Ichiye, T. & Karplus, M. Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins: Struct. Funct. Gen. 11, 205–217 (1991).

    Article  Google Scholar 

  58. García, A. Large-amplitude nonlinear motions in proteins. Phys. Rev. Lett. 68, 2696–2699 (1992).

    Article  ADS  Google Scholar 

  59. Rajan, A., Freddolino, P. L. & Schulten, K. Going beyond clustering in MD trajectory analysis: An application to villin headpiece folding. PLoS One 5, e9890 (2010).

    Article  ADS  Google Scholar 

  60. Karpen, M. E., Tobias, D. J. & Brooks, C. L. Statistical clustering techniques for the analysis of long molecular dynamics trajectories: Analysis of 2.2-ns trajectories of YPGDV. Biochemistry 32, 412–420 (1993).

    Article  Google Scholar 

  61. Daura, X. et al. Peptide folding: When simulation meets experiment. Angew. Chem. Int. Ed. 38, 236–240 (1999).

    Article  Google Scholar 

  62. Keller, B., Daura, X. & van Gunsteren, W. F. Comparing geometric and kinetic cluster algorithms for molecular simulation data. J. Chem. Phys. 132, 074110 (2010).

    Article  ADS  Google Scholar 

  63. Singhal, N., Snow, C. D. & Pande, V. S. Using path sampling to build better Markovian state models: Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin. J. Chem. Phys. 121, 415–425 (2004).

    Article  ADS  Google Scholar 

  64. Chodera, J. D., Singhal, N., Pande, V. S., Dill, K. A. & Swope, W. C. Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. J. Chem. Phys. 126, 155101 (2007).

    Article  ADS  Google Scholar 

  65. Krivov, S. V. & Karplus, M. One-dimensional free-energy profiles of complex systems: Progress variables that preserve the barriers. J. Phys. Chem. B 110, 12689–12698 (2006).

    Article  Google Scholar 

  66. Krivov, S. V. & Karplus, M. Diffusive reaction dynamics on invariant free energy profiles. Proc. Natl Acad. Sci. USA 105, 13841–13846 (2008).

    Article  ADS  Google Scholar 

  67. Krivov, S. V., Muff, S., Caflisch, A. & Karplus, M. One-dimensional barrier-preserving free-energy projections of a beta-sheet miniprotein: New insights into the folding process. J. Phys. Chem. B 112, 8701–8714 (2008).

    Article  Google Scholar 

  68. Muff, S. & Caflisch, A. Identification of the protein folding transition state from molecular dynamics trajectories. J. Chem. Phys. 130, 125104 (2009).

    Article  ADS  Google Scholar 

  69. Best, R. B. & Hummer, G. Reaction coordinates and rates from transition paths. Proc. Natl Acad. Sci. USA 102, 6732–6737 (2005).

    Article  ADS  Google Scholar 

  70. Case, D. A. et al. AMBER 10 (Univ. California, 2008).

    Google Scholar 

  71. MacKerell, A. D. Jr et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    Article  Google Scholar 

  72. Baily, C., Cieplak, P., Cornell, W. & Kollman, P. A well-behaved electrostatic potential-based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 100, 10269–10280 (1993).

    Article  Google Scholar 

  73. Shirts, M. R. & Pande, V. S. Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. J. Chem. Phys. 122, 134508 (2005).

    Article  ADS  Google Scholar 

  74. Deng, Y. & Roux, B. Computations of standard binding free energies with molecular dynamics simulations. J. Phys. Chem. B 113, 2234–2246 (2009).

    Article  Google Scholar 

  75. Buck, M., Bouguet-Bonnet, S., Pastor, R. W. & MacKerell, A. D. Importance of the CMAP correction to the CHARMM22 protein force field: Dynamics of hen lysozyme. Biophys. J. 90, L36–L38 (2006).

    Article  Google Scholar 

  76. Chen, J., Brooks, C. L. & Scheraga, H. A. Revisiting the carboxylic acid dimers in aqueous solution: Interplay of hydrogen bonding, hydrophobic interactions, and entropy. J. Phys. Chem. B 112, 242–249 (2008).

    Article  Google Scholar 

  77. Best, R. B., Buchete, N-V. & Hummer, G. Are current molecular dynamics force fields too helical? Biophys. J. L07–L09 (2008).

  78. Best, R. B. & Hummer, G. Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides. J. Phys. Chem. B 113, 9004–9015 (2009).

    Article  Google Scholar 

  79. Hornak, V. et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65, 712–725 (2006).

    Article  Google Scholar 

  80. MacKerell, A. D. Jr, Feig, M. & Brooks, C. L. III Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25, 1400–1415 (2004).

    Article  Google Scholar 

  81. Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78, 1950–1958 (2010).

    Google Scholar 

  82. Ufimtsev, I. S. & Martinez, T. J. Quantum chemistry on graphical processing units. 2. Direct self-consistent-field implementation. J. Chem. Theor. Comput. 5, 1004–1015 (2009).

    Article  Google Scholar 

  83. Kortemme, T., Morozov, A. V. & Baker, D. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein–protein complexes. J. Mol. Biol. 326, 1239–1259 (2003).

    Article  Google Scholar 

  84. Morozov, A. V., Kortemme, T., Tsemekhman, K. & Baker, D. Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations. Proc. Natl Acad. Sci. USA 101, 6946–6951 (2004).

    Article  ADS  Google Scholar 

  85. Lii, J-H. & Allinger, N. L. Directional hydrogen bonding in the MM3 force field: II. J. Comput. Chem. 19, 1001–1016 (1998).

    Article  Google Scholar 

  86. Fabiola, F., Bertram, R., Korostelev, A. & Chapman, M. S. An improved hydrogen bond potential: Impact on medium resolution protein structures. Protein Sci. 11, 1415–1423 (2002).

    Article  Google Scholar 

  87. Morozov, A. V., Tsemekhman, K. & Baker, D. Electron density redistribution accounts for half the cooperativity of alpha helix formation. J. Phys. Chem. B 110, 4503–4505 (2006).

    Article  Google Scholar 

  88. Cieplak, P., Caldwell, J. & Kollman, P. Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: Aqueous solution free energies of methanol and n-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases. J. Comput. Chem. 22, 1048–1057 (2001).

    Article  Google Scholar 

  89. Ponder, J. W. et al. Current status of the AMOEBA polarizable force field. J. Phys. Chem. B 114, 2549–2564 (2010).

    Article  Google Scholar 

  90. Archambault, F. et al. Polarizable intermolecular potentials for water and benzene interacting with halide and metal ions. J. Chem. Theor. Comput. 5, 3022–3031 (2009).

    Article  Google Scholar 

  91. Patel, S. & Brooks, C. L. III CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. J. Comput. Chem. 25, 1–16 (2004).

    Article  Google Scholar 

  92. Yu, H. & van Gunsteren, W. F. Charge-on-spring polarizable water models revisited: From water clusters to liquid water to ice. J. Chem. Phys. 121, 9549–9564 (2004).

    Article  ADS  Google Scholar 

  93. Lamoureux, G. & Roux, B. Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm. J. Chem. Phys. 119, 3025–3039 (2003).

    Article  ADS  Google Scholar 

  94. Zhou, R. & Berne, B. J. Can a continuum solvent model reproduce the free energy landscape of a beta-hairpin folding in water? Proc. Natl Acad. Sci. USA 99, 12777–12782 (2002).

    Article  ADS  Google Scholar 

  95. Hess, B. & van der Vegt, N. F. A. Hydration thermodynamic properties of amino acid analogues: A systematic comparison of biomolecular force fields and water models. J. Phys. Chem. B 110, 17616–17626 (2006).

    Article  Google Scholar 

  96. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  ADS  Google Scholar 

  97. Lamoureux, G., Harder, E., Vorobyov, I. V., Roux, B. & MacKerell, A. D. Jr A polarizable model of water for molecular dynamics simulations of biomolecules. Chem. Phys. Lett. 418, 245–249 (2006).

    Article  ADS  Google Scholar 

  98. Ren, P. & Ponder, J. W. Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B 107, 5933–5947 (2003).

    Article  Google Scholar 

  99. Liu, F., Gao, Y. G. & Gruebele, M. A survey of lambda repressor fragments from two-state to downhill folding. J. Mol. Biol. 397, 789–798 (2010).

    Article  Google Scholar 

  100. Frishman, D. & Argos, P. Knowledge-based secondary structure assignment. Proteins 23, 566–579 (1995).

    Article  Google Scholar 

  101. Eastwood, M. P., Hardin, C., Luthey-Schulten, Z. & Wolynes, P. G. Evaluating protein structure-prediction schemes using energy landscape theory. IBM J. Res. Dev. 45, 475–497 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The field of molecular dynamics simulations of protein folding is so broad that it is impossible here to discuss the work of all major contributors, and thus we apologize to the (many) excellent investigators whose work could not be included because of space constraints. The authors are supported by grant P41-RR005969 from the National Institutes of Health and NSF PHY0822613 from the National Science Foundation. We thank A. Rajan for assistance in figure preparation, and C. Chipot for helping to refine our discussion of polarizable force fields.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Schulten.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freddolino, P., Harrison, C., Liu, Y. et al. Challenges in protein-folding simulations. Nature Phys 6, 751–758 (2010). https://doi.org/10.1038/nphys1713

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing