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Interacting electrons in one dimension beyond the
Luttinger-liquid limit
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Over the past several decades, Luttinger-liquid theory has
provided a framework for interacting electrons in one dimen-
sion. However, the validity of the theory is strictly limited to
low-energy excitations where the electron dispersion is linear.
Interacting electrons in one-dimension beyond the Luttinger-
liquid limit, where the underlying dispersion of electrons is no
longer linear, exhibit intriguing manifestations of the interac-
tions, which have direct implications on many experimental
systems. For example, consider the energy relaxation of parti-
cles or holes, the unoccupied states in a Fermi sea. Whereas
in Luttinger-liquid theory such energy relaxation is strictly
forbidden, in a nonlinearly dispersing one-dimensional electron
system energy relaxation is allowed but very different for parti-
cles and holes. Here, we use momentum-resolved tunnelling to
selectively inject energetic particles and holes into a quantum
wire and study their relaxation processes. Our measurements
confirm that energetic particles undergo fast relaxation to a
thermalized distribution and holes retain their original injection
energy, thereby providing a clear demonstration of electron
dynamics beyond the Luttinger limit. A model of thermalization
derived in the limit of weak interactions shows quantitative
agreement with the experimental findings.

One-dimensional (1D) systems provide a unique venue for the
study of interaction effects in many-body problems. The reduced
dimensionality qualitatively changes the role of interactions,
leading to such phenomena as spin-charge separation1, charge
fractionalization2 and Wigner crystallization3 (for a review, see
ref. 4). Luttinger-liquid theory5 has been extremely successful in
explaining and predicting most of these phenomena. However, the
inherent underlying assumption of a linear dispersion limits the
applicability of this theory to low-energy excitations. One physical
process that is expected to show a qualitatively different behaviour
when incorporating a nonlinear dispersion is energy relaxation.
In three dimensions, the relaxation rate resulting from electron–
electron interactions of excited particles or holes with energy ε
is proportional to (ε − εF)2/εF, where εF is the Fermi energy,
predicting a long lifetime for low-energy excitations (here and later,
we use h̄ = 1; ref. 6). Although this continuity across the Fermi
surface was conjectured to be broken for some non-Fermi liquids7,
the Luttinger-liquid theory manifestly preserves the particle–hole
symmetry. However, in a 1D system where band parabolicity is not
neglected, a fundamental difference arises between particles and
holes8,9.When a particlewith initialmomentum kp (|kp|> |kF|) loses
momentum k, it gives up an energy equal to Ep= (2kpk−k2)/2m∗.
Although Ep is too large to be carried by a single particle–hole (p–h)
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pair, relaxation is allowed through the excitation of multiple p–h
pairs (Fig. 1a). In marked contrast, the energy lost by an excited
hole with initial momentum kh (|kh|< |kF|) is Eh= (2khk+k2)/2m∗,
too low to be carried by any number of p–h pairs (Fig. 1a). Here,
we provide direct measurements of the relaxation properties of
energetic particles and holes far from the Fermi energy, a regime
where the conventional Luttinger-liquid theory does not apply.

A double-wire system (see Fig. 1b) is used to selectively inject
electrons with a definite energy and momentum10 from the
upper wire into the lower wire. Details on sample structure and
measurement technique are provided in the Methods section.
Owing to conservation of energy and momentum in the tunnelling
process, tunnelling is allowed only when occupied states from the
upper-wire dispersion overlap, in momentum and energy, with
unoccupied states from the lower wire, or vice versa. Selective
injection of electrons with specific energy and momentum is
accomplished by inducing a relative displacement between the two
dispersions in both momentum and energy. A bias, V , applied
between the wires results in a displacement of −eV in energy
between the dispersions. A magnetic field, B, applied perpendicular
to the plane formed by the twowires boosts the tunnelling electrons,
and shifts the dispersion of the lower wire relative to the dispersion
of the upper wire in momentum by an amount given by −eBd ,
where d is the distance between the wires’ centres. At sufficiently
strong magnetic fields, BL(R)

= (−)1/ed|kUWF +k
LW
F |, a right (left)-

moving electron from the upper wire (UW) tunnels into a left
(right)-moving state in the lower wire (LW). The current resulting
from this injection of directional electrons is then collected by the
two drains, on the left and right of the source junction.

Figure 2a shows the total differential conductance for magnetic
fields near BL and −eV ranging up to approximately ±EF/3. The
strong cross-shaped differential-conductance peak corresponds to
the onset of tunnelling when the Fermi point of one wire intersects
the other wire’s dispersion. Each of the four arms in this cross
represents a distinct process. Arm (I) appears at B > BL and
−eV > 0, so that the upper-wire Fermi point overlaps empty
states in the lower wire. Along this branch, energetic particles are
injected into the lower wire. Arm (IV), similarly, corresponds to the
extraction of particles from the lower wire below the Fermi point,
that is, the injection of energetic holes. We study dynamics in the
lower wire, and therefore term the branch containing arms (I) and
(IV) the ‘hot’ branch. The signal on the opposite diagonal (arms
II and III) results from injection of particles and holes from the
upper wire into the lower-wire Fermi point and will therefore be
termed the cold branch. The total differential conductance along
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Figure 1 | Kinematic constraints on particle and hole relaxation in
one dimension, and measurement set-up. a, The energy lost by an
energetic particle with momentum kp,1E= (2kpk−k2)/2m, overlaps the
continuum of multiple p–h excitations, (2kkF−k2)/2m6 E, allowing for
particle relaxation. As no such overlap exists for energetic holes with initial
momentum kh, satisfying1E= (2khk+k2)/2m, these cannot relax. b, The
measurement set-up comprising two parallel quantum wires. Two top gates
are used to locally deplete the upper wire (UW) directly below them, and
define a short source junction and two long drains on both sides. Transport
takes place by tunnelling from the upper wire to the lower wire (LW) at the
source junction, and a second tunnelling event from the lower wire to the
upper wire at the drains. The numbered arrows specify the position and
direction of charge modes used in the theoretical description.

both the hot and cold branches is nearly independent of the type
of process taking place.

Figure 2b,c shows the differential conductance measured sep-
arately at the right and left drains. At B = BL, a stronger signal
is observed on the left drain (Fig. 2b) relative to the right drain
(Fig. 2c). Information on the directionality of the injected current
can be gained by subtracting the signals arriving to the right and
left drains (Fig. 2d), showing a clear difference between energetic
particles and holes. For most of the hot particle arm, the injected
left-moving particles are indeed predominantly collected at the left
drain. For the hot holes arm, as well as for the entire cold branch, a
much smaller asymmetry is obtained.

The asymmetry between energetic particles and holes seen in the
raw data presented in Fig. 2d constitutes the main finding of this
work. In the rest of this letter, we present a quantitative discussion
of the results shown in Fig. 2, using a dimensionless measure of the
asymmetry defined as

AS=
dGL
−dGR

dGL+dGR
(1)

with dGL(R) being the differential conductance measured at the left
(right) drain. This is a normalized value that eliminates the effect
of the source junction tunnelling efficiency. ASmay range from−1
to 1, with |AS| = 1 when all of the current reaches only one drain,
and AS= 0 for an equal partitioning of the current between the
two drains. In Fig. 3a, we plot AS versus B along two trajectories
marked by dashed lines in Fig. 2d, corresponding to the onset of
injection of hot and cold particles to the lower wire. The difficulty
in separating the cold and hot branches near their intersection point
renders values of AS in the range−0.3mV<VSD< 0.3mV difficult
to interpret.We therefore focus our discussion on |VSD|>0.3mV.

We first consider the asymmetry profile of the cold branch. As
described earlier, all points on this branch correspond to injection
of electrons at the Fermi point of the lower wire. Nonetheless, the
asymmetry (blue dots in Fig. 3a) clearly diminishes away from the
crossing point, B= BL. This can be accounted for by considering
the role of the drains in the measurement of current asymmetry.
The upper wire is tuned to inject electrons into the Fermi point of
the lower wire by application of a bias V . However, at the drains,
where such bias is absent (because most of the bias drops on the
source junction), both dispersions have the same Fermi energy, but
except forB=BL(R) there is no overlap between full and empty states
of the two wires’ dispersions (see insets (I), (II) of Fig. 3a). The
imperfect tuning between upper-wire and lower-wire Fermi points
at the drains along the cold branch reduces the tunnelling rate out
of the lower wire and causes the directionality to be lost because
of the inevitable presence of backscattering processes. We call this
effect drain detuning, and define the degree of drain detuning as the
momentum an electron has to acquire (or lose) to be collected by
the drain, while conserving energy.Maximal asymmetry is therefore
expected when the drains are exactly tuned to extract the charge
from the lower wire. Indeed, from Fig. 3a we infer a maximal
asymmetry for B=BL

= 4.77 T.
At low bias, the charge currents in the lower wire can be further

analysed within the framework of Luttinger-liquid theory, which
considers interacting electrons in the approximation of a linear
dispersion. This assumed linearity yields a common velocity for
all charge excitations, regardless of their energy, and allows for a
wide applicability of the concept of charge fractionalization11–18.
Measurements2 of the asymmetry of the injected current at low
bias are consistent with that concept. Within the Luttinger-liquid
paradigm, one may think of the charge of an electron injected with
momentum close to one of the Fermi points as being fractionalized
into counter-propagating excitations carrying charges f = (1+g )/2
in the direction of the injected electron, and 1− f = (1− g )/2 in
the opposite direction. Here g is the Luttinger-liquid interaction
parameter. Remarkably, the ratio

AS/(G2T/G0)= (2f −1)/g = 1 (2)

is independent of the fractionalization (here G2T is the two-
terminal conductance measured between the two drains and
G0=2e2/h is the conductance quantum). This conclusion, obtained
within the Luttinger-liquid theory, is unambiguously confirmed by
experiment2. In a linear d.c. measurement, the independence of the
ratio equation (2) on g is protected by momentum conservation18.
In Fig. 3a we show an excellent fit between the asymmetry of cold
particles and G2T, consistent with the previous findings2 (using
methods described in10, we estimate g =0.55 giving f =0.77).

We now turn to study the richer picture obtained for energetic
particles.We do not know a prioriwhether a particle or hole injected
at an elevated energy maintains its energy, or rather relaxes part or
all of it. In the absence of relaxation, a single peak in asymmetry is
expected at B= BL, where particles are injected at the Fermi point
of the source, and the drains are exactly tuned to extract them. In
contrast, relaxed particles could give rise to an increased asymmetry
through two mechanisms. First, particles with initial energy εI that
relax part of their energy and reach εF<ε<εI would show increased
asymmetry, when the drain is better tuned to extract the relaxed
particle. Second, the p–h pairs that are excited in the relaxation
process can also alter the measured asymmetry, because owing to
the detuning, the drain preferentially extracts particles or holes. The
latter process is described in detail below.

For hot particles (B>BL)we indeed find themaximal asymmetry
at a magnetic field larger than BL. As corroborated in the following,
this is consistent with particle relaxation through creation of
energetic p–h pairs moving in the same direction as the relaxing
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Figure 2 | Measured sum and difference of differential conductance on the two sides of the injection region. a, Total differential conductance. Each of
the four branches of the conductance cross represents a different tunnelling process (see text). b,c, Differential conductance measured on the left drain,
in the direction of the injected current (b), and on the right drain (c). d, The difference between the differential conductance in the injection direction and
counter to it reveals a strong p–h asymmetry. The dashed lines mark the cold and hot branches. Along the grey dotted line (B= BL), the drain is tuned to
extract electrons from the Fermi point of the lower wire.

particle9. For energetic holes (B<BL), we find an asymmetry equal
to that of the cold branch. This suggests that the hot holes do not
relax, so the drain detuning (Fig. 3a(IV)) is 1k—the momentum
offset at the drains between the lower-wire and upper-wire states
at the injection energy. Importantly, to establish this conclusion
for hot holes, we have to contrast it with an alternative, where
the holes relax to εF by a mechanism that does not involve p–h
pair creation. As the drain dispersion intersects the lower-wire
dispersion at the midpoint between the injection point and the
Fermi point (open circle in Fig. 3a(IV)), the absolute values of
drain detuning |1k| are the same for complete energy relaxation
to the Fermi level, and for no relaxation at all. To distinguish
between complete and no relaxation, we study the asymmetry along
a different V –B trajectory in Fig. 2d, where the injection energy
(−eV ) is changed while keeping B constant at BL. Along this
trajectory the drain is fixed to extract particles from the Fermi point
of the lower wire independent of the injection energy (Fig. 3b(I)).
The results, shown in Fig. 3b, present again a marked difference for
the injection of energetic particles (−eV > 0) and holes (−eV < 0).
For energetic particles we find that the asymmetry decreases initially
but then remains constant independent of the injection energy.
This is an indication that the injected particles relaxed close to
the Fermi level. For energetic holes on the other hand a strong
decrease in asymmetry is obtained, eliminating the possibility of
full energy relaxation. As the possibility of partial energy relaxation
for holes was ruled out, this observation decisively establishes that
energetic holes did not relax at all during their transport in the lower
wire before being collected at the drains. In the Supplementary
Information we present yet another approach to establishing the
relaxation rates of particles and holes that further corroborates

this conclusion. The marked difference in relaxation times for
particles and holes can be quantified, using the estimated time
of transport through the lower wire. Particles travel a minimal
distance of ≈2 µm in the wire, as determined by the gates separating
the source and drain junctions. For a typical Fermi velocity of
2×105 ms−1, it takes an electron∼10−11 s to pass through the wire.
Over that time particles do relax, whereas holes do not, which sets
the limits for the relaxation times, τe < 10−11 s,τh� 10−11 s, in the
conditions of the experiment.

Although in the linear regime equation (2) remains true for
any interaction strength, including the limit of weak interaction
(g → 1, f → 1), it may break down at higher bias, once the
simplification of a linear spectrum assumed in Luttinger-liquid
theory becomes invalid19. Indeed, our experiment shows a clear
deviation from the predictions of Luttinger-liquid theory at
higher bias. Although equation (2) holds when energetic holes
are injected, the measured AS for hot particles is significantly
larger than G2T (Fig. 3a). Below we show that this observation is
quantitatively consistent with the notion of energy relaxation of hot
particles, a process that does not exist under the assumptions of
Luttinger-liquid theory.

To evaluate the asymmetry ratio equation (1) for the conditions
of hot-particle injection (Fig. 3a(I)), we account for the nonlinear
dispersion relation of electrons, in the weak interaction limit,
g → 1. In this limit, we can relate the currents of charge and
energy in the lower wire, Ii and Pi, respectively, to the electron
distribution function,

Ii= (G0/e)
∫ [

fi(ε)− f0(ε)
]
dε

Pi=
(
G0/e2

)∫ [
fi(ε)− f0(ε)

]
εdε

(3)
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asymmetry is identical to the cold particle case. Hot particle asymmetry shows a high peak, indicating energetic particles do relax. Assuming
thermalization of the distribution function after the relaxation, we obtain an excellent agreement with the measurement. Insets: Intersections of upper-wire
and lower-wire dispersions near B= BL. At the source, both a momentum shift1k and an energy shift−eV are induced, and tunnelling between states with
equal energy and momentum is allowed (dark circles). At the drains only the shift in momentum remains, giving rise to drain detuning. The dispersions
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arrows indicate the momentum mismatch for particles tunnelling at the drains. Hot particles relax (red arrow in a(I)) before being collected by the drains.
b, The energy dependence of the asymmetry when B= BL. Inset: the measurement leading to b, when the upper wire at the source is shifted in energy by
the application of V, while the magnetic field is kept at B= BL, leading to no detuning at the drains.

Here f0(ε) is the equilibrium distribution function and fi(ε) denotes
the distribution functions in the lower wire for left-movers (i= 1
to the right and i= 2 to the left of the source) and right-movers
(i= 3), see Fig. 1b; for definiteness, we consider injection of left-
moving particles from the source. The detailed theory9,20 of electron
energy exchange implies that equilibration occurs predominantly
between quasiparticles moving in the same direction. Assuming
that the energy equilibration length between electrons moving
in the same direction is shorter than the distance between the
source and drain terminals, we identify fi(ε) with Fermi distribution
functions having constant chemical potentials µi and temperatures
Ti throughout the respective domain of the lower wire. We find
these six parameters from balance equations for the charge and
energy currents at the source and (two) drain electrodes (yielding
six equations in total). For example, the corresponding balance
equations at the source read

I2− I1= Is and P2−P1= Ps (4)

with
IS= (G0/e)

∫
T (1k (ε))

[
fU(ε)− f1(ε)

]
dε

PS=
(
G0/e2

)∫
T (1k (ε))

[
fU(ε)− f1(ε)

]
εdε

(5)

Here, the subscript U stands for the upper wire. The junction
transmission probability T in equation (5) depends on energy ε
through the momentum detuning between the dispersions of the

two wires 1k(ε). We find the transmission probabilities at the
source and drains based on two-terminal zero-bias measurements,
in which the momentum detuning between the two wires is directly
controlled by the applied magnetic field B (see Supplementary
Information for details).

At small bias, the three pairs of balance equations (of which the
first pair is given by equations (3)–(5)) can be solved analytically.
Finding the drain currents in this regime, we confirm the validity of
equation (2). At higher biases we resort to a numerical solution of
the balance equations.We find relatively small shifts of the chemical
potentials µi, of order 1% of the applied bias, but a significant
increase in the effective temperatures reaching approximately 1 K
per applied 1mV source bias. On the basis of the resulting
distribution functions, we evaluate the differential conductances
entering equation (2). Despite the simplicity of our model, we
obtain quantitative agreement of the evaluated asymmetry with
the experimental data, see Fig. 3a. Combined with the qualitative
difference between the measured AShot for hot-particle and hot-
hole injection, this further corroborates the conclusion about
the particle–hole asymmetry: energetic particles relax through
the excitation of p–h pairs, rapidly reaching a fully thermalized
distribution function, whereas energetic holes travel along the
quantumwire without appreciable relaxation.

As stated, the above theory is applicable under the assumption
of weak interactions, whereas in practice electrons in the measured
system are notably interacting, with a Luttinger parameter g ≈ 0.55.
Nonetheless, we obtain excellent agreement between the theoretical

492 NATURE PHYSICS | VOL 6 | JULY 2010 | www.nature.com/naturephysics

© 2010 Macmillan Publishers Limited.  All rights reserved. 

http://www.nature.com/doifinder/10.1038/nphys1678
http://www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS1678 LETTERS
prediction and the measurements, suggesting the asymmetry
of energetic particles is weakly dependent on interactions. In
the Supplementary Information we suggest a set of equations
generalizing the above description to include strong interactions,
which indeed reproduce such a weak dependence on the strength
of interactions. However, we would like to stress that this
generalization is not derived from first principles. Indeed, our work
emphasizes a significant gap in the theoretical understanding of
interacting 1D systems in that a complete microscopic description
of kinetics and energy relaxation in the strongly interacting limit
does not exist at present.

Methods
The double-wire system is fabricated by the cleaved-edge overgrowth method21
(see Fig. 1b). The electrons in the upper wire are confined to a 20–25-nm-wide
well in the growth direction and a triangular potential approximately 20 nm
wide perpendicular to the cleave direction. The electrons in the lower wire are
confined to a 30 nm well in the growth direction and a similar triangular potential
perpendicular to the cleave plane. The barrier separating the wires is 6 nm wide
and 300mV high. Two top gates are used to electrostatically deplete the upper
wire beneath them while leaving the lower wire continuous, thus defining three
junctions. The middle junction, termed the ‘source’, can have a length of 6–40 µm,
determined by the distance between the two gates. The junctions on the right
and left sides of the source, termed the right and left drains, are of millimetre
length. We measure the differential conductance ∂I/∂VSD between the source and
each of the drains using standard lock-in techniques. Typically dVSD is 14 µV and
the modulation frequency is a few hertz. The measurements are taken in a 3He
refrigerator at T= 0.25K. In practice, a bias VS−D is imposed between the source
and drains junctions. However, almost the entire potential drop takes place at the
short source junction, because it constitutes the dominant resistance in the circuit.
Therefore,V≈VS−D at the source region andV≈0 at the drains.
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