Article | Published:

Quantum entanglement in photosynthetic light-harvesting complexes

Nature Physics volume 6, pages 462467 (2010) | Download Citation

Subjects

Abstract

Light-harvesting components of photosynthetic organisms are complex, coupled, many-body quantum systems, in which electronic coherence has recently been shown to survive for relatively long timescales, despite the decohering effects of their environments. Here, we analyse entanglement in multichromophoric light-harvesting complexes, and establish methods for quantification of entanglement by describing necessary and sufficient conditions for entanglement and by deriving a measure of global entanglement. These methods are then applied to the Fenna–Matthews–Olson protein to extract the initial state and temperature dependencies of entanglement. We show that, although the Fenna–Matthews–Olson protein in natural conditions largely contains bipartite entanglement between dimerized chromophores, a small amount of long-range and multipartite entanglement should exist even at physiological temperatures. This constitutes the first rigorous quantification of entanglement in a biological system. Finally, we discuss the practical use of entanglement in densely packed molecular aggregates such as light-harvesting complexes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47, 777–780 (1935).

  2. 2.

    Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812 (1935).

  3. 3.

    , , & Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008).

  4. 4.

    , , & Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).

  5. 5.

    Quantifying entanglement in macroscopic systems. Nature 453, 1004–1007 (2008).

  6. 6.

    Entanglement production in non-equilibrium thermodynamics. J. Phys. Conf. Ser. 143, 012010–012018 (2007).

  7. 7.

    , , & Nonequilibrium thermal entanglement. Phys. Rev. A 75, 032308 (2007).

  8. 8.

    , & Dynamic entanglement in oscillating molecules and potential biological implications. Preprint at  (2008).

  9. 9.

    , , , & Enhanced quantum entanglement in the non-Markovian dynamics of biomolecular excitons. Chem. Phys. Lett. 478, 234–237 (2009).

  10. 10.

    et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

  11. 11.

    , & Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 316, 1462–1465 (2007).

  12. 12.

    et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–648 (2010).

  13. 13.

    et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Preprint at  (2010).

  14. 14.

    Molecular Mechanisms of Photosynthesis (Wiley-Blackwell, 2002).

  15. 15.

    , & Exciton delocalization length in the B850 antenna of Rhodobacter sphaeroides. J. Phys. Chem. 100, 10787–10792 (1996).

  16. 16.

    , , & Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J. Phys. Chem. B 101, 7241–7248 (1997).

  17. 17.

    , & Photosynthetic Excitons (World Scientific, 2000).

  18. 18.

    Single-particle entanglement. Phys. Rev. A 72, 064306 (2005).

  19. 19.

    & Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997).

  20. 20.

    , , & Quantifying entanglement. Phys. Rev. Lett. 78, 2275–2279 (1997).

  21. 21.

    , & The structure of the FMO protein from Chlorobium tepidum at 2.2 A resolution. Photosynth. Res. 75, 49–55 (2003).

  22. 22.

    & How proteins trigger excitation energy transfer in the FMO complex of green sulphur bacteria. Biophysical J. 91, 2778–2797 (2006).

  23. 23.

    & Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equations approach. J. Chem. Phys. 130, 234111 (2009).

  24. 24.

    , , & Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting. Proc. Natl Acad. Sci. USA 106, 6134–6139 (2009).

  25. 25.

    , , & Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes. J. Chem. Phys. 107, 3876–3893 (1997).

  26. 26.

    et al. Visualization of excitonic structure in the Fenna–Metthews–Olson photosynthetic complex by polarization-dependent two-dimensional electronic spectroscopy. Biophysical J. 95, 847–856 (2008).

  27. 27.

    , , & Environment-assisted quantum walks in energy transfer of photosynthetic complexes. J. Chem. Phys. 129, 174106 (2008).

  28. 28.

    & Dephasing-assisted transport: Quantum networks and biomolecules. New J. Phys. 10, 113019 (2008).

  29. 29.

    , & Theory of rapid excitation-energy transfer from B800 to optically-forbidden exciton states of B850 in the antenna system LH2 of photosynthetic purple bacteria. J. Phys. Chem. B 103, 6096–6102 (1999).

  30. 30.

    & On the mechanism of light harvesting in photosynthetic purple bacteria: B800 to B850 energy transfer. J. Phys. Chem. B 104, 1854–1868 (2000).

  31. 31.

    , & Multichromophoric Förster resonance energy transfer. Phys. Rev. Lett. 92, 218301 (2004).

  32. 32.

    Bacterial photosynthesis begins with quantum-mechanical coherence. Chem. Record 1, 480–493 (2001).

  33. 33.

    & Coherence in the B800 ring of purple bacteria LH2. Phys. Rev. Lett. 96, 028103 (2006).

  34. 34.

    & Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl Acad. Sci. USA 106, 17255–17260 (2009).

  35. 35.

    , , & Teleportation of a vacuum-one-photon qubit. Phys. Rev. Lett. 88, 070402 (2002).

  36. 36.

    , & Quantum-enhanced measurements: Beating the standard quantum limit. Science 306, 1330–1336 (2004).

  37. 37.

    , , , & ‘Designer atoms’ for quantum metrology. Nature 443, 316–319 (2006).

  38. 38.

    , , , & Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007).

  39. 39.

    et al. Experimental evidence for exciton scaling effects in self-assembled molecular wires. Phys. Rev. Lett. 93, 257401 (2004).

  40. 40.

    et al. Solid state cavity QED: Strong coupling in organic thin films. Org. Electron. 8, 94–113 (2007).

  41. 41.

    & Perfect quantum state transfer with randomly coupled quantum chains. New J. Phys. 7, 135–147 (2005).

  42. 42.

    Discussion of probability relations between separated systems. Proc. Cambridge Phil. Soc. 31, 555–563 (1935).

  43. 43.

    , & Separability of mixed states: Necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996).

  44. 44.

    Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996).

  45. 45.

    & Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH, 2004).

  46. 46.

    et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005).

  47. 47.

    , , , & Exciton analysis in 2D electronic spectroscopy. J. Phys. Chem. B 109, 10542–10556 (2005).

  48. 48.

    & On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. J. Chem. Phys. 130, 234110 (2009).

  49. 49.

    Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems. J. Phys. Soc. Jpn 75, 082001 (2006).

Download references

Acknowledgements

We are grateful to Y-C. Cheng, J. Dawlaty, V. Vedral and M. Plenio for conversations and comments. This material is based on work supported by DARPA under award No N66001-09-1-2026. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under contract No DE-AC02-05CH11231 and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, US Department of Energy under contract DE-AC03-76SF000098. A.I. appreciates the support of a Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship for Research Abroad.

Author information

Affiliations

  1. Berkeley Center for Quantum Information and Computation, Berkeley, California 94720, USA

    • Mohan Sarovar
    •  & K. Birgitta Whaley
  2. Department of Chemistry, University of California, Berkeley, California 94720, USA

    • Mohan Sarovar
    • , Akihito Ishizaki
    • , Graham R. Fleming
    •  & K. Birgitta Whaley
  3. Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    • Akihito Ishizaki
    •  & Graham R. Fleming

Authors

  1. Search for Mohan Sarovar in:

  2. Search for Akihito Ishizaki in:

  3. Search for Graham R. Fleming in:

  4. Search for K. Birgitta Whaley in:

Contributions

Calculations were carried out by M.S. and A.I. All authors contributed extensively to the planning, discussion and writing up of this work.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Mohan Sarovar.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys1652