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Observation of a one-dimensional spin–orbit gap
in a quantum wire
C. H. L. Quay1,2*†, T. L. Hughes1†, J. A. Sulpizio1, L. N. Pfeiffer2†, K. W. Baldwin2†, K. W.West2†,
D. Goldhaber-Gordon1 and R. de Picciotto2†

Understanding the flow of spins in magnetic layered structures
has resulted in an increase in data storage density in hard
drives over the past decade of more than two orders of
magnitude1. Following this remarkable success, the field of
‘spintronics’ or spin-based electronics1–3 is moving beyond
effects based on local spin polarization and is turning
towards spin–orbit interaction (SOI) effects, which hold
promise for the production, detection and manipulation of
spin currents, allowing coherent transmission of information
within a device1,2. Although SOI-induced spin transport effects
have been observed in two- and three-dimensional samples,
these have been subtle and elusive, often detected only
indirectly in electrical transport or else with more sophisticated
techniques4–9. Here we present the first observation of a
predicted ‘spin–orbit gap’ in a one-dimensional sample, where
counter-propagating spins, constituting a spin current, are
accompanied by a clear signal in the easily measured linear
conductance of the system10,11. We first introduce the class
of phenomena we dub ‘the one-dimensional spin–orbit gap’
using a simple example adapted from ref. 10, then describe our
experiment in detail and finally present a more elaborate model
that captures most of the features seen in our data.

The SOI is a relativistic effect where a charged particle moving
in an electric field experiences an effective magnetic field, which
couples to its spin12. In semiconductor heterostructures, the electric
field can arise as a result of either the lack of an inversion
centre in the crystal (bulk inversion asymmetry) or a lack of
symmetry in an external confining potential (structural inversion
asymmetry) resulting from crystal interfaces or other structures
such as metallic gates13. The strength of the resulting effective
magnetic field is proportional to both the particle’s momentum and
the original electric field.

Consider a spin-degenerate one-dimensional (1D) sub-band
with a HamiltonianH0= h̄2k2/2m, where h̄ is the reduced Planck’s
constant, k is the particle’s momentum and m is its mass (Fig. 1a).
The leading-order spin–orbit contribution to the Hamiltonian is
HSO = βσ · (k× ∇V ), where σ is the particle’s spin, V is the
electrostatic potential and β is a material-dependent parameter14.
This term breaks the spin degeneracy of the system and results
in two spinful sub-bands separated by a lateral (wavevector) shift
as shown in Fig. 1b.

Despite this rather striking change in the band structure, mea-
surements of conductance through the system cannot distinguish
the situation shown in Fig. 1b from the case where the spins are
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degenerate. In both cases the edges of the two spin sub-bands
occur at the same energy, so in both cases the conductance rises
by G0= 2e2/h when the Fermi level of the system is tuned through
this energy (for example, by applying a voltage to a nearby gate)15–17
(Fig. 1d.) To detect the spin–orbit shift in a transportmeasurement,
a different approach is needed.

Note that the spins as shown in Fig. 1b are polarized in the
direction of BSO, which is perpendicular to both the momentum
(that is, the 1D wire) and the external electric field. (BSO can be
anywhere in the y–z plane in Fig. 2.) A magnetic field applied
exactly along BSO shifts the spinful bands up and down by the
Zeeman energy respectively, splitting each step of size G0 into
two steps of size G0/2 as shown in Fig. 1e. Here spin is polarized
alternately up and down for the respective spinful bands and
thus the charge current can be completely spin polarized when
only one spinful band is occupied; however, charge transport
measurements still reveal no difference between this system and one
where there is no SOI.

Now consider a magnetic field applied perpendicular to BSO
(say along the wire): the two spinful bands are mixed by this term
so that the zero-field crossing point becomes an anticrossing. We
call this feature the spin–orbit gap (Fig. 1c). When the Fermi level
lies within such a gap, two Fermi points (for example, 3 and 4
in Fig. 1f) contribute to the current as opposed to the four at the
same energy in Fig. 1d. The conductance is thus reduced by G0/2
as shown in Fig. 1f. In addition, the current from this sub-band is
completely spin polarized in a way that is expected to be robust
to moderate disorder: holes must scatter between the points 1
and 2 or between 3 and 4 (Fig. 1f) and undergo a spin flip to
backscatter. In such a system of counter-propagating spins (very
nearly what is termed a ‘helical liquid’18), the direction of the spin
current is expected to be independent of the sign of the voltage
applied across the system and is determined only by the sign of the
SOI. Intriguingly, a pure spin current, without charge current, is
expected to exist at zero bias voltage.

Finally, a magnetic field applied neither exactly perpendic-
ular nor parallel to BSO results in a mixture of the two ef-
fects described above10.

We turn now to our experiment. Our samples are GaAs/AlGaAs
hole quantum wires produced by the cleaved-edge overgrowth
method19,20. Starting with an extremely high-mobility 2D hole gas
(2DHG) realized in a carbon-doped AlGaAs/GaAs/AlGaAs quan-
tum well21, the sample is cleaved and more AlGaAs is grown using
molecular beam epitaxy over the freshly exposed surface. Further
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Figure 1 | The spin–orbit gap in a simple model and the associated
conductance features. a, The dispersion relation for electrons in a
spin-degenerate 1D sub-band. b, The SOI lifts the spin degeneracy,
displacing spinful sub-bands laterally with respect to each other. c, An
applied magnetic field can mix the two spin bands, creating the
anticrossing we dub the spin–orbit gap. When the Fermi energy is tuned to
be within this gap, particles of opposite spin travel in opposite directions,
producing a spin current. At the same time, a clear drop is expected in the
conductance, shown in f. d, With SOI but without an applied magnetic field,
the conductance of the system increases by a step of 2e2/h each time the
gate voltage aligns the Fermi energy to the bottom of a sub-band. e, A
magnetic field applied parallel to BSO splits each step into two half-steps of
e2/h. f, With a magnetic field applied perpendicular to BSO, spin–orbit gaps
appear as in c and the conductance drops when the Fermi energy lies
within such a gap.

carbon doping leads to hole accumulation at the GaAs/AlGaAs
interface on the cleavage plane, resulting in a 1D wire (Fig. 2a). We
are able to apply a magnetic field either parallel or perpendicular to
the wire (in the x or y directions indicated in Fig. 2b).

The basic properties of our wires have been or will be reported
in other publications20. Another body of work on quasi-1D wires in
GaAs (ref. 22,23) focused on gate-defined quantum point contacts
on a 2DHG grown in the 311 direction. These studies found that,
because of the SOI, the effective g -factor depends strongly on
the particular sub-band studied as well as the direction of the
wire and that of the magnetic field with respect to the crystal
axes. They did not, however, observe signs of the spin–orbit
gap reported below, perhaps because of the growth direction of
their 2DHG or their nearly symmetrical confinement potential.
Recent tunnelling spectroscopy of carbon-nanotube quantum dots
revealed few-electron states shaped by spin–orbit coupling, with a
Hamiltonian andmagnetic-field coupling rather different from that
in semiconductor nanowires such as ours24.
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Figure 2 | The device and measurement set-up. a, Cross-section of our
devices, which are fabricated by the cleaved-edge overgrowth method19,20.
b, Measurement scheme for the 1D hole wires. A section of the wire is
isolated using a gate, which depletes the 2DHG just beneath it.
Conductance is measured using ohmic contacts to the 2DHG on either side
of the wire and decreases in steps, each of which corresponds to the
depletion of a 1D sub-band20.
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Figure 3 | The first two conductance steps of a quantum wire and their
evolution in magnetic fields applied in two different directions. a, A field
perpendicular to the wire splits the second step at zero field (blue trace)
into two half-steps, the first marked with an arrow (red trace). b, A field
parallel to the wire produces a half-step (arrow) and a dip (thick arrow),
signifying the presence of a spin–orbit gap. Both features are absent in the
absence of a magnetic field (blue traces). On the first step (gate voltages
larger than 3.5 V) no dip is observed and half-steps, if they exist at all, are
hardly discernible.

In Fig. 2b, applying a positive voltage to pre-fabricated gates
on the top surface of the wafer, we deplete first the 2DHG under
the gate to isolate the 1D wire and subsequently the sub-bands
of the wire. The conductance, measured between ohmic contacts
to the 2DHG on either side of the gate/wire, decreases in steps as
the wire sub-bands are successively depleted. (Unlike in quantum
point contacts, the conductance steps in these systems do not
correspond to the ideal value of 2e2/h because of the imperfect
coupling between the 2DHG and the 1D wire as described in
greater detail in ref. 25.)

In Fig. 3—which shows our main experimental results—we
focus on the first two conductance steps seen at zero magnetic field
(blue traces) corresponding to the lowest two sub-bands in the
wire, and their evolution in magnetic fields applied in two different
directions, y and z (red traces). Concentrating first on the second,
higher, conductance step, we see that a magnetic field in the y
direction transforms this step into two half-height steps (Fig. 3a),
whereas a field along x produces both two half-steps and a dip
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Figure 4 | Predictions from our model of band structures and
conductance traces. a, The dispersion relations of the two lowest quantum
wire sub-bands with no applied magnetic field. b, The same bands in a
magnetic field of 9 T perpendicular to the wire, with g= 2. c, The same
bands in a magnetic field of 9 T parallel to the wire, with g= 2/9.
d, Conductance traces calculated from a (blue) and b (red) with the
experiment temperature of 300 mK. Compare to Fig. 3a. e, Conductance
traces calculated from a (blue) and c (red) with the experiment
temperature of 300 mK. Compare to Fig. 3b.

(Fig. 3b). In contrast, the first step seems unaffected by magnetic
field in either direction.

Let us try to understand these results in terms of the simple
model presented in Fig. 1. Assuming that the main contribution to
the spin–orbit effect results from structural inversion asymmetry,
we expect BSO to be perpendicular to the wire, in the y–z plane,
as the structure is translationally invariant along the length of the
wire. Thus, a magnetic field in the x direction (perpendicular to
BSO) should produce dips in the zero-field conductance steps (as in
Fig. 1f), whereas one in the y direction should split each zero-field
conductance step into two half-steps (as in Fig. 1e) and possibly also
produce dips simultaneously.

Our data bear more than a passing resemblance to the
expectations from the simple model, yet the two are significantly
different in their details. A more realistic model, described below,
enables us tomore fully understand our results.

We use a four-band Luttinger model13 (not to be confused with
the Tomonaga–Luttinger liquid theory) and include confinement
in two directions, taking into account the orientation of our
wire in the GaAs crystal. This model considers the lowest four
spinful sub-bands, with the higher sub-bands being ignored.
The parameters in the model are: C , γ1, γ2, γ3, χ , dy , dz ,
ry and rz . C and the γi are bulk (Al)GaAs band structure
parameters that are well established in the literature. χ describes
the leakage of the 1D hole wavefunctions from the GaAs where
they are nominally confined into the surroundingAlGaAs; however,
the model is not very sensitive to this parameter. dy and dz
describe the confinement in the y and z directions, and ry
and rz are the strength of the structural-inversion-asymmetry
electric field in the y and z directions. We start by using an
isotropic value of 2 for the g -factor and return to this point
later. The full Hamiltonian and details of its derivation as
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Figure 5 | Reproducibility. Data from a separate device, showing the dip on
the second step resulting from the presence of the spin–orbit gap.

well as values chosen for each parameter can be found in the
Supplementary Information.

Figure 4a shows the lowest energy bands calculated with this
Hamiltonian in the absence of magnetic field. Focusing first on the
upper pair of bands, we see that applying a field in the y direction
shifts them in energy (Fig. 4b), producing a double step in the
conductance trace (Fig. 4d), which is seen in our data (Fig. 3a).
In contrast, a field in the x direction produces a gap in the band
structure (Fig. 4c) and a dip in the conductance trace (Fig. 4e), also
seen in our data (Fig. 3b).

As for the lower pair of bands, the spin splitting at B = 0 is
much smaller than in the upper bands. Furthermore, as in our
data, magnetic fields in both directions do not have much of
an effect (Figs 3 and 4). (The small half-step in the red trace
in Fig. 4d could be obscured in the data by the disorder-related
features near depletion.)

Clearly the coupling between the two lower bands resulting from
the SOI, or a magnetic field, is suppressed. This is a consequence
of the fact that these bands have been chosen in the model to be
primarily of heavy-hole character—their carriers have spin±3/2—
a choice motivated by our data and other physical considerations
as explicated in the Supplementary Information. The leading-order
Rashba and Zeeman terms are linear order in spin operators and
thus can couple only states with 1S= 1. As 1S= 3 for the heavy
holes, the two lower sub-bands are not coupled by these terms. Their
coupling requires cubic-order terms in the spin operators. Such
terms, however, are small in all components of the Hamiltonian:
Rashba and Zeeman couplings that are cubic in spin operators do
exist, but their coupling constants are suppressed13. The lowest
order Dresselhaus term is cubic in spin operators, but in GaAs it is
again very small13 and thus has almost no effect on the bands.

Indeed, the Dresselhaus term has a minimal effect not only on
the lower bands but on the upper pair of bands as well. Therefore,
the spin–orbit effects seen in our samples come primarily from the
asymmetry of the confining potential of the 1D wire, that is, the
Rashba term. We find further that the electric field associated with
this potential is stronger in the z direction than in the y direction.

We return now to the question of the g -factor. We find that,
to produce features of the experimentally observed sizes at the
applied 9 T field, our model requires an effective g -factor of two
in the y direction and an effective g -factor of 2/9 in the x direction
(Fig. 4d,e). Such an anisotropy in the effective g -factor is expected
in the presence of spin–orbit coupling and is dependent on the
strength and direction of confinement13,22,23.

(One must be wary when speaking of effective g -factors in the
presence of spin–orbit coupling as quantities commonly interpreted
as ‘spin splittings’ are not necessarily equal to g ∗µBB, where g ∗ is
the effective g -factor in the Zeeman term in the Hamiltonian. For
example, in the simple 1Dmodel described in Fig. 1, the situation in
Fig. 1f could be interpreted as g ∗= 0 on the basis of measurements
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of sub-band edges such as those in refs 25 and 26, whereas g ∗ in the
model is most definitely finite.)

We are thus able to describe most of the important features of
our data with the proposed model and to identify their physical
causes. Further theoretical work is needed to understand one feature
of our data that our model fails to capture: the occurrence of
a double step in addition to a dip when the magnetic field is
applied in the x direction.

We also acquired data similar to those in Fig. 3 at finely spaced
intermediate fields (Supplementary Information). These data show
that the observed conductance dip and half-steps develop gradually
with magnetic field, enabling us to rule out resonances associated
with particular values of the magnetic field as the cause of the
observed features. In addition, these features—and in particular
the conductance dip—were observed in a separate device (Fig. 5)
and persist after thermal cycling; thus, they are also not linked to
particular configurations of the disorder potential in the device.

We have observed for the first time the spin–orbit gap predicted
for 1D systems and we have developed a model that describes most
of the detailed features of our data by taking into account the
materials properties of (Al)GaAs.

Several directions seem promising for the further exploration of
these gaps. For this particular device geometry, even cleaner wires
would allow the study of spin–orbit effects at finite bias voltage and
in higher sub-bands. A tunnelling set-up such as in ref. 26 could
probe the dispersion relations directly; and a side gate as in ref. 27
would allow tuning the strength of the electric field that gives rise
to the spin–orbit effect.

For the purposes of spintronics applications, verification of spin
transport, particularly at zero bias, would be of great interest. This
could be achieved either through direct detection of the spin current
or through the detection of spin accumulation at the two ends
of the device. It would also be of practical interest to explore the
possibility of producing such spin–orbit gaps in the lowest sub-band
and without a magnetic field. Although in our experiments the
spin–orbit gap is induced by a magnetic field, this may not be
necessary: the two spin bands could be mixed at k = 0 in other
ways, perhaps through the use of materials with magnetic order or
through controlled doping withmagnetic impurities.

Finally, in other studies Coulomb interactions have been found
to have marked effects in 1D systems including cleaved-edge
overgrowth electron wires28, and further work is necessary to
understand their role in these newly developed systems.
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