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Isolated optical vortex knots
Mark R. Dennis1*, Robert P. King1,2, Barry Jack3, Kevin O’Holleran3 and Miles J. Padgett3*

Natural and artificially created light fields in three-dimensional
space contain lines of zero intensity, known as optical
vortices1–3. Here, we describe a scheme to create optical beams
with isolated optical vortex loops in the forms of knots and
links using algebraic topology. The required complex fields with
fibred knots and links4 are constructed from abstract functions
with braided zeros and the knot function is then embedded in
a propagating light beam. We apply a numerical optimization
algorithm to increase the contrast in light intensity, enabling
us to observe several optical vortex knots. These knotted
nodal lines, as singularities of the wave’s phase, determine the
topology of the wave field in space, and should have analogues
in other three-dimensional wave systems such as superfluids5

and Bose–Einstein condensates6,7.
In nature, one never finds the plane waves described in text-

books; real physical waves, such as light beams, are superpositions of
many plane waves propagating in different directions. Generically,
interference of three or more plane waves results in optical vortex
lines, where the intensity is zero, and around which the phase
increases by 2π (refs 1, 2). This contrasts with a single plane
wave, for which the intensity is uniform, and the wavefronts—the
surfaces of constant phase—are nested planes perpendicular to
the wavevector k. The presence of vortices disrupts this regular
arrangement of wavefronts3: a straight vortex line parallel to k
has helicoidal wavefronts; a circular vortex loop perpendicular to
k is the edge of a punctured wavefront. The situation is more
complicated when a single, isolated vortex loop is knotted8. Here,
we establish theoretically and demonstrate experimentally that
wavesmay contain a single isolated knotted vortex loop.

The global topology of such a knotted vortex field is non-
trivial. Wavefront surfaces with all phase labels must intersect
on the vortex lines in any optical field, and fill all space. If
the vortex line is knotted, all wavefront surfaces have a knotted
boundary curve, and are thus multiply connected. Although the
vortices occupy a finite volume of space, this topology affects
the entire wave field. Such non-trivial topology of physical fields
arises elsewhere in physics, such as flows in fluid dynamics9
(including Lord Kelvin’s vortex atom hypothesis10), quantum
condensates6,7 and field theory11,12. Time-dependent solutions
of Maxwell’s equations in which all electric field lines have
the form of torus knots (knots that can be drawn, without
crossing, on a torus) were found in ref. 13. This knotting of
light complements our present approach, in which the topology
resides in the optical complex amplitude, giving knots that are
directly observable in the intensity distribution of the beam.
Knotted vortex loops are hypothesized to be generic in turbulent
and chaotic wave fields, including superfluids5, optical14 and
biological waves15, although only unknotted linked vortex rings
have been identified in large-scale simulations of these systems.
In mathematical topology, the complex scalar wavefunctions we
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describe are fibred knots4. As such, they contrast with optical
beams studied previously16,17, in which the vortex knots and
links were of necessity threaded by infinite vortex lines, and so
have no underlying wavefront topology of interest, and were
only torus knots.

In knot theory, complex-valued scalar functions of three-
dimensional (3D) space with knotted zero lines are found as
polynomial expansions around singularities in high-dimensional
spaces, calledMilnor maps18. This approach, originally restricted to
a class of cable knots4 (including the torus knots), was subsequently
extended19,20 to include other fibred knots including the figure-8
knot. We mathematically realize these knotted and linked zeroes by
devising complex functions in an abstract 3D space with zero lines
on a periodic braid, reminiscent of the constructions of refs 19, 20.
Examples of two such braids, described in detail below, are shown
in Fig. 1a,b, enclosed in a cylinder. This cylinder and its interior are
then smoothly mapped to the solid torus, with height coordinate
h mapping to the torus azimuth φ. Under this transformation, the
braid becomes one ormore closed rings, with the topology of a knot
or link, localized in three dimensions. The thrice-twisted double
helix of Fig. 1a is mapped to a trefoil knot (Fig. 1c), and the pigtail
braid in Fig. 1b, the figure-8 knot of Fig. 1d. The construction of
suchMilnor maps f (r), for r= (x,y,z), is described explicitly in the
following paragraph.

A periodic N -strand braid may be represented by N distinct
points in the complex plane, sj(h), trigonometrically parameterized
by height h, with sj(h+2π)= sj(h), j = 1,...,N . For each h, these
points are the roots of a polynomial in the variable u,

ph(u)=
N∏
j=1

(u− sj(h))

The roots corresponding to the helical braid in Fig. 1a execute a
circular trajectory as h varies, and those of the pigtail braid in
Fig. 1b, a lemniscate. On replacing h with v = exp(ih), ph(u) may
be rewritten as a complex polynomial q(u,v) in complex variables u
and v . The braids of Fig. 1a,b correspond to the polynomials

qhelix(u,v)= u2−vn (1)

qpigtail(u,v) = 64u3−12u(2vn−2v∗n+3)

− (14vn+14v∗n+v2n−v∗2n) (2)

n is the number of repeats of the basic braid crossing sequence
(denoted by the yellow arrow in the figure): n= 3 for Fig. 1a, n= 2
for Fig. 1b. The two crossings that occur in the braid in Fig. 1b occur
with different signs because the polynomial in equation (2) involves
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Figure 1 | Theoretical construction of knotted complex wave fields from braids. a, A two-strand braid is twisted three times, represented by equation (1)
with n= 3. b, A three-strand pigtail braid represented by equation (2), made from two copies of the basic braid crossing sequence (n= 2). Each strand
follows a∞-shaped trajectory (in black) in the horizontal plane. c, Nodal trefoil knot arising from the Milnor map of the braid in a. The toroidal tube around
the knot is the image of the cylinder around the original braid, and the strands are coloured the same way. d, Figure-8 knot arising from the pigtail braid in a
similar way. e, Trefoil knotted nodal line arising from propagating the Milnor polynomial of c in the z=0 plane. The phase in this plane is represented by the
coloured disc (with the scale in Fig. 2). f, Figure-8 knot in a propagating field, arising in a similar way from the Milnor polynomial for d.

both v and its complex conjugate v∗. Making u and v functions of
position r= (x,y,z) in 3D space,

u= u(r)= ((r2−1)+2iz)/(r2+1), v = v(r)= 2(x+ iy)/(r2+1)
(3)

defines the Milnor map f (r)= q(u(r),v(r)), which has knotted and
linked zero lines determined by the underlying braid. For qhelix(u,v)
the procedure gives a (2,n) torus knot (such as the trefoil knot
in Fig. 1c) and for qpigtail(u,v), a family of knots4,19 including the
figure-8 knot (n = 2, Fig. 1d), Borromean rings (n = 3) and the
Turk’s head knot 818 (n=4). The numerator of f (r) is a polynomial
in x,y,z , which we call the Milnor polynomial. The functions in
equation (3) are the standard complex coordinates for the 3-sphere.

Such complex fields can generate physical wave fields with knot-
ted vortex lines.Many optical fieldsψ satisfy the paraxial equation

(∂2x +∂
2
y )ψ =−2ik∂zψ (4)

Mathematically, there is a unique paraxial wave field ψ , which
satisfies equation (4), and that exactly coincides with any given
Milnor polynomial in the plane z = 0. For many explicit examples
we have studied, this field, on evolution in z , has the same nodal
line topology as the Milnor map f (r). Cases this works for include
those described above for n< 10; however, the knot of the Milnor
map of u5− v2 and that of its corresponding paraxial polynomial
do not agree, and we lack a general proof of why this construction

works in the cases it does. The knotted nodal lines for propagating
trefoil and figure-8 knot fields are shown in Fig. 1e,f. A description
of the various functions we use for the trefoil knot is given explicitly
in the Supplementary Information. This procedure of constructing
polynomial solutions coinciding with the Milnor polynomial when
z = 0, and containing the same knots, also works for other linear
wave equations, such as the Helmholtz equation, with appropriate
choice of parameters.

Although such propagating polynomials satisfy equation (4),
they do not represent physical beams, as they diverge as x,y→∞.
However, the knot remains when the polynomial in the z = 0 plane
ismultiplied by aGaussian profile of widthw,exp(−(x2

+y2)/2w2),
provided w is sufficiently large (typically w > 1). As the width w
decreases, other vortex lines approach the knot from z = ±∞,
and eventually reconnect with the knotted or linked vortices21,
destroying the topology. These extra vortices arise from interference
on propagation between the different z-dependent Gouy phases22,23
of the propagatingGaussian opticalmodes intowhich theGaussian-
modulated polynomials naturally decompose. Beams of this form
in the focal plane are easy to manipulate experimentally, and
we do so as superpositions of the Laguerre–Gauss basis modes22,
labelled by (l,p). The azimuthal index is represented by l and
p is the radial index of the mode. This analytic approach to
Gaussian beam propagation can be taken with any mode set, such
as Hermite–Gaussian modes23.

The exact positions of vortex lines are susceptible to experimen-
tal imperfections, and such complicated destructive interference
structures are hard to realize in the laboratory. Our experiment
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Figure 2 | Numerical optimization of a Gaussian beam trefoil knot. a–f, Several plots for the trefoil knot, emphasizing the difference between the
unoptimized and optimized Laguerre–Gauss superpositions for width w= 1.2: intensity in the waist plane (z=0) (unoptimized (a), optimized (b)), phase
in the same plane (c,d, respectively) and three-dimensional vortex knot on propagation (e,f). In e,f, the black lines give the transverse Gaussian width w,
and the length of the yellow line in the propagation direction represents a Rayleigh range. For the chosen width w= 1.2, the unoptimized (optimized)
coefficients weighting the Laguerre–Gauss modes (l, p) in these plots are: (0, 0) 1.71 (1.51); (0, 1)−5.66 (−5.06); (0, 2) 6.38 (7.23); (0, 3)−2.30 (−2.03);
(3, 0)−4.36 (−3.97), normalized so that the sums of the squares are equal to 100. As the superposition consists of only one Laguerre–Gauss mode with
non-zero azimuthal index l, the superposition retains three-fold symmetry on propagation.

is based on a diffractive holographic scheme, in which a Gaussian
laser beam is synthesized with the desired phase and intensity in its
focal plane. This is done by a spatial light modulator (SLM), which
is a computer-controlled liquid-crystal device that imprints phase
patterns on laser light. We configure a single SLM as a diffractive
component with a spatially dependent blazing function. The light
propagating from the hologram has a phase pattern determined
by the shape of the grating lines on the hologram, and intensity
determined by their contrast24.

Such techniques are frequently used in sculpting the bright
patterns in light beams for applications such as optical trapping25.
Various algorithms can be used to determine an optimized beam
profile, by converging on the desired pattern by means of a cost
function that depends on the resulting 2D or 3D pattern26. Such
optimization minimizes the effects of experimental imperfections,
such as optical misalignment and pixellation in the SLM. Vortices,
which are found in low-intensity regions of the light, are particularly
sensitive to experimental noise, and optimization is required for
experimental realization.

To optimize our knot field profile for experiments, we have
developed an algorithm to shape darkness. First, we choose a
sufficiently large width w to avoid risk of reconnection with
vortex lines approaching from high z . This beam is decomposed
into Laguerre–Gauss modes, giving a finite set of coefficients. We
then iteratively optimize the superposition by randomly changing
the coefficients. Only changes that maintain the vortex topology
in a prescribed cylindrical volume around the original knot are

considered further (numerically implemented by requiring the
xy-projected knot to have the same planar representation27),
forbidding the approach of any extra vortices owing to the Gaussian
factor. The change is kept if the value of the cost function is lower
than that of the unchanged superposition. This cost function is
defined by

∑
voxels r in volume[min(I0,I (r))]−1, where I0 is a saturating

intensity (set at a few per cent of Imax).
The constraint of fixed vortex topology forces an unusual

restriction on the cost-function landscape, which nevertheless
seems robust: for each knot, several runs of a few hundred steps
converge to the same set of coefficients. An illustration of the
difference between the vortex trefoil knot in a Gaussian beam,
before and after optimization, is shown in Fig. 2. The net result of
the algorithm is to separate the vortex points in each cross-section
with regions of higher intensity, and to tend to align the axial vortex
line segments with the propagation direction.

We have used the outputs of this algorithm to create isolated
optical vortex knots in laser light using a SLM. A CCD (charge-
coupled device) array mounted on a motorized stage28 images
the field interferometrically. Thus, the phase at each point is
measured directly29, allowing precise location of the positions of the
intersection of the vortex lines with the measurement plane. About
100 such planes are measured, allowing the vortex configuration
in the volume to be determined precisely. Figure 3 shows three
experimentally measured configurations: the Hopf link (generated
with unoptimized coefficients), the trefoil knot and the cinquefoil
knot ((2, 5) torus knot). These are based on different n in qhelix(u,v)
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Figure 3 | Plots of experimental nodal knots and links. The curves
represent optical vortex lines, numerically reconstructed from measured
optical phase fields at different propagation distances. These knots were all
generated with the polynomial qhelix(u,v) of equation (1), with different n,
and optimized with different widths w. a, Hopf link (n= 2, w= 1.4,
coefficients weighting the Laguerre–Gauss mode (l, p): (0, 0) 2.63; (0, 1)
−6.32; (0, 2) 4.21; (2, 0)−5.95). b, Trefoil knot (n= 3, w= 1.2, coefficients
as given for the optimized case in Fig. 2). c, Cinquefoil knot (n=5, w=0.93,
coefficients (0, 0) 0.61; (0, 1)−2.56; (0, 2) 6.15; (0, 3)−6.35; (0, 4) 2.92;
(0, 5)−0.61; (5, 0)−2.45). The black and yellow arrows are as in Fig. 2.

in equation (1) (n = 2, 3 and 5), corresponding to the number
of repeats of the double-helix crossing of Fig. 1a. Movies of the
trefoil and cinquefoil knot structures, and the sequence ofmeasured
phase maps from which these vortex knots were reconstructed, are
given in the Supplementary Information. We have been unable to
generate experimental knots based on the pigtail braid of Fig. 1b
with sufficient contrast to be observed experimentally, so the
vortices observed in our experiments are all torus knots.

We have described and implemented a scheme to create isolated
optical vortex knots and links in propagating laser fields. Our
approach combines holographic optimization with an abstract
algebraic representation of knotted complex fields, although
experimental realization has not been possible for all of the knotted
fields we find theoretically. The new technique of holographically
optimizing dark fields complements the more familiar shaping of
bright regions of beams. This technique may find application in the
design of optical landscapes for blue-detuned trapping6 or super-
resolved fluorescent imaging30, both of which require precision
shaping of nodal structures. The fact that the z = 0 sections of
Milnor polynomials evolve topologically to give fibred knots raises
the intriguing possibility of understanding initial-value problems
through knot theory: the non-trivial 3D topological information is
encrypted in the 2D section taken as the hologram. It is unknown
whether other physical waves, satisfying for instance nonlinear wave
equations, will have the same topological propagation properties.
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