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thesis

Assume nothing
Eugene Wigner wrote famously about the 
unreasonable effectiveness of mathematics 
in science. His own ideas illustrate the point 
as well as any others. In 1956, at a conference 
on neutron physics in Gatlinburg, Tennessee, 
Wigner spoke on the energy levels of large, 
complex nuclei such as uranium, for which 
data were just becoming available. He 
expressed the view that a good deal might 
be learned by making a virtue of theoretical 
ignorance, and simply assuming random 
values for the elements of the Hamiltonian 
matrix, which in quantum theory 
determines the nuclear energy levels through 
its eigenvalues.

Wigner showed that this ‘simple 
minded’ approach could establish baseline 
expectations for the spacing of nuclear levels 
in the absence of any other knowledge. 
“The question”, he noted, “is simply, what 
are the distances of the characteristic 
values of a symmetric matrix with random 
coefficients?” Wigner’s result, worked out 
in a few lines of algebra, gave a probability 
distribution of the form p(x) ~ xexp(−ax2), 
with x being the energy spacing and a = π/4, 
thereby pointing to a dearth of levels of 
similar energy. The result contrasted sharply 
with what might have been the expected 
Poisson form, p(x) ~ exp(−x), for which 
x = 0 would be a maximum rather than 
a minimum.

Wigner’s random-matrix approach was 
indeed effective, as experiments over the 
next few years — especially those probing 
resonances in neutron scattering from 
uranium — showed a remarkably close fit to 
his predicted curve. Much more surprising, 
perhaps, has been the enormous influence 
of random-matrix theory since then in 
areas ranging from pure mathematics to the 
study of financial risk. All, one might say, by 
assuming almost nothing and then working 
out the consequences.

In the early 1970s, Freeman Dyson 
and Hugh Montgomery stumbled over 
a connection between Wigner’s idea and 
pure mathematics. Montgomery had been 
studying the famous Riemann zeta function, 
defined as ζ(s) = Σ∞n = 11/ns, which has some zeros 
located along the ‘critical line’ defined by 
s = 1/2. It is unknown whether all zeros lie 
on this line — the assertion that they are is 
known as the Riemann hypothesis — or how 
the zeros are distributed. But it is known that 
the distribution of such zeros can be linked 
to the distribution of prime numbers, and 
hence holds fundamental importance for 
number theory.

Montgomery told Dyson that he’d been 
studying the pair-correlation function for 
the zeros of ζ(s), arriving at an estimate for 
its asymptotic form of 1 − (sin(πx)/πx)2, 
which Dyson recognized immediately as the 
pair-correlation function for the eigenvalues 
of random matrices of the form studied by 
Wigner. To this day, it is not known why 
the same equation should turn up in the 
distributions of both nuclear energy levels 
and the roots of ζ(s), and by implication in 
the distribution of the prime numbers, but 
computations suggest that the connection 
is remarkably precise. Mathematician 
Andrew Odlyzko has computed the 
locations of zeros of ζ(s) along the critical 
line, identifying as many as 1023 zeros and 
finding a near-perfect agreement between 
the predicted and measured correlations. The 
zeroes of ζ(s) effectively repel one another 
much as do nuclear energy levels (see, for 
example, B. Hayes, American Scientist 
July–August 2003).

One intriguing possibility is that this 
connection points to some mysterious 
relationship between ζ(s) and the mathematics 
of quantum theory. Even before the advent 
of quantum theory, mathematicians 
David Hilbert and George Pólya 
independently suggested — apparently 
inspired by some loose analogy to the 
discrete energy spectra recently discovered 
in atoms — that the zeroes of ζ(s) might be 
given by the eigenvalues of some unknown 
Hermitian matrix. If so, then some Hermitian 
operator of the kind familiar to all physicists 
may determine the positions of the Riemann 
zeroes and, with them, the distribution of the 
primes — certainly a strange link between 
physics and mathematics.

Random-matrix theory has now been 
applied widely in statistics, condensed-matter 
physics and elsewhere. But its practically 
most important applications may be still to 
come, especially in extracting meaningful 
information from huge quantities of data.

The most obvious way to look for cause-
and-effect relationships in data, of course, 
is to identify correlations among variables, 
which may point to mechanisms of causal 

influence, or be useful for making predictions. 
With modern technology, the automated 
screening of enormous volumes of high-
dimensional data for interesting correlations 
has become a key tool of science, especially 
in molecular biology, environmental science, 
economics and finance.

But this practice faces a fundamental 
problem. As the number of variables being 
studied grows, the number of pairs of 
variables among which correlations might 
be found grows even faster. In this case, 
straightforward calculation is almost certain 
to detect correlations that look significant but 
really aren’t. Suppose, for example, you have 
M input variables and N output variables — 
you might think of inflation, employment, 
a stock market index and any other number 
of economic quantities. Suppose you have 
time series for all of these quantities over 
time T, and you look for correlations between 
inputs and outputs. Then, even if these 
variables were all independent with Gaussian 
fluctuations, one would expect that the largest 
observed correlation — if you calculate them 
all — will be of the order (ln(MN))/T (see, for 
example, J.-P. Bouchaud et al. Eur. Phys. J. B 
55, 201–207; 2007), which gets large for any 
fixed T given enough variables to study.

This has become known as the ‘curse of 
dimensionality’. Automation makes it easy 
to study everything, and too easy to find 
meaningless patterns in doing so. Fortunately, 
however, here too Wigner’s random-matrix 
approach has proven useful, in this case for 
separating what is meaningful from what is 
nonsense. Correlations calculated between 
truly independent variables should produce 
a random M × N matrix. Studying the typical 
spectral features of such random matrices 
helps to establish baseline expectations for 
the correlations likely to be produced by 
statistical fluctuations alone. In particular, 
studies have shown that the eigenvalues of 
truly random matrices tend to be confined 
within an interval with sharp edges. Hence, 
eigenvalues in empirical data found to stand 
out and away from these edges should signify 
real and meaningful correlations.

Undoubtedly, further uses will be found 
for Wigner’s random matrices, which in truth 
were invented long before Wigner by people 
interested in correlations in empirical data. 
But Wigner’s 1956 work stimulated the deeper 
mathematical analysis of such matrices, with 
repercussions that almost anyone would call 
surprising — even, perhaps, unreasonable. ❐
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Wigner expressed the 
view that a good deal 
might be learned by 
making a virtue of  
theoretical ignorance.
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