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Collective excitations of composite fermions
across multiple 3 levels
Dwipesh Majumder1, Sudhansu S. Mandal1 and Jainendra K. Jain2*
The fractional quantum Hall state1 is a quintessential system
for the study of collective quantum behaviour. In such
a system, the collective behaviour results in the creation
of so-called composite fermions, quasi-particles formed by
electrons attached to magnetic flux quanta. Recently, a
new collective mode was unexpectedly observed in Raman
scattering experiments2 on such a system as it was found to
split off from the familiar ‘fundamental’ long-wavelength mode
on increase of the wave vector. Here, we present results from
extensive theoretical calculations that make a compelling case
that this mode corresponds to an excitation of a composite
fermion across two 3 levels—effective kinetic energy levels
resembling Landau levels for such particles. In addition to
explaining why this excitation merges with the fundamental
mode in the long-wavelength limit, our theory also provides
a good quantitative account of the amount of splitting, and
makes several experimentally verifiable predictions.

Unlike the well-known quantum phenomena of superfluidity
and superconductivity, the fractional quantum Hall effect1 does
not entail any Bose–Einstein condensation but occurs as a
result of the formation of topological electron–vortex bound
states called composite fermions3. Transport4, light scattering5,6
and phonon scattering7,8 have been extensively used during the
past quarter of a century to probe its numerous excitations.
Of particular significance is the neutral collective mode, which
was first studied theoretically at Landau-level filling ν = 1/3
in a single-mode approximation9, wherein, following Feynman’s
theory of the phonon–roton mode of helium superfluid, the
excitation is modelled as a density wave. The neutral collective
mode was detected by Raman scattering5, with the observations
generally consistent with the predictions of the single-mode
approximation in the long-wavelength limit. More recently,
however, Hirjibehedin et al.2 have discovered that this mode is not
a single mode, as believed earlier, but splits into two as the wave
vector is increased. By definition, the single-mode approximation
cannot accommodate a doublet. A hydrodynamic approach has
been proposed10 to account for the experimental observation,
but does not take into account the microscopic physics of the
fractional quantum Hall effect (FQHE), does not naturally explain
the merging of the twomodes in the long-wavelength limit and also
greatly underestimates the splitting.

We show here that this new mode finds a natural explanation
within the composite-fermion theory3. Composite fermions are
bound states of electrons and an even number (2p) of quantized
vortices. Because of the Berry phases produced by the bound
vortices, composite fermions effectively experience a much reduced
magnetic field B∗ = B− 2pρφ0 (B is the external magnetic field,
ρ is the two-dimensional density and φ0 = hc/e is called the
flux quantum). Composite fermions form their own Landau-like
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kinetic energy levels in this reduced magnetic field, called 3

levels, and their filling factor ν∗ is related to the electron filling
factor ν through the relation ν = ν∗/(2pν∗+ 1). In particular, at
ν = n/(2pn+ 1), the ground state consists of n filled 3 levels. In
the composite-fermion theory, the lowest-energy neutral excitation
is a particle–hole pair, or an exciton, of composite fermions,
wherein a single composite fermion from the topmost occupied
3 level is excited into the lowest unoccupied 3 level (Fig. 1b
shows the fundamental composite-fermion exciton at ν = 2/5).
The validity of this description has been confirmed for fractions of
the form ν = n/(2pn+ 1) by comparison to exact diagonalization
results as well as to experiment11,12. This physical explanation for
the neutral collective excitations is distinct from the single-mode
approximation, and, in particular, suggests the possibility of extra
collective modes, in which a composite fermion is excited across
two ormore3 levels, as shown schematically in Fig. 1c, in complete
analogy to the collective modes of an integral quantum Hall
state13. However, it is far from obvious that the composite-fermion
collective modes across different3 levels should merge in the long-
wavelength limit. In fact, a model that takes composite fermions as
non-interacting produces collective modes spaced by the effective
cyclotron energy in the long-wavelength limit, as also found for
the dispersions obtained in the composite-fermion Chern–Simons
approach14,15; if correct, this would make such physics irrelevant to
the new collective mode discovered in ref. 2. For a more definitive
test, however, the composite-fermion exciton-mode spectrummust
be evaluated in a microscopic approach that includes effects of
inter-composite-fermion interactions.

Exact diagonalization studies of the FQHE state do not by
themselves provide an understanding of the underlying physics,
and are not useful in the present context, because, as seen below,
systems as large as 200 particles are required for investigating
the experimentally relevant wave vectors; the Fock space increases
exponentially with the number of particles, and at present exact
diagonalization is possible only for 10–12 particles for the filling
factors of interest here. Our quantitative investigations below
exploit accurate trial wavefunctions for composite fermions3. The
standard spherical geometry is used in our calculations, which
considers electrons moving on the surface of a sphere, subjected
to a radial magnetic field. The magnetic field can be thought
to emanate from a ‘magnetic monopole’ of strength Q at the
centre, which produces a total magnetic flux of 2Qφ0 through
the surface of the sphere. This maps into a system of composite
fermions at an effective flux Q∗ = Q − N + 1, with Q chosen
so that the state at Q∗ is an integral quantum Hall state at
filling ν∗ = n. The wavefunction 9CF-g for the FQHE ground
state at ν = n/(2n+1) is obtained by composite-fermionizing the
ν∗= n integral quantum Hall state 8g. To model neutral collective
excitations, we first construct wavefunctions of the excitons of the
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Figure 1 | Schematic diagram of composite-fermion excitons. Each composite fermion is shown as an electron carrying vortices represented by arrows. a,
Representation of the ground state at ν= 2/5 as two filled3 levels. b,c, 1→ 2 (b) and 0→ 2 (c) composite-fermion excitons.
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Figure 2 | Dispersions of several composite-fermion excitons and their spectral weights. a, The three lowest composite-fermion exciton modes at
ν= 1/3, obtained from 0→ 1, 0→ 2 and 0→ 3 excitons. The error bar at the end of each curve represents the typical statistical error in the energy
determined by the Monte Carlo method. The energies are quoted in units of e2/ε`, where ε is the dielectric constant of the background semiconductor and
`=
√
h̄c/eB is the magnetic length. b, The three lowest composite-fermion exciton modes at ν= 2/5, obtained from 1→ 2, 0→ 2 and 1→ 3 excitons. c,

Spectral weights for the three modes at ν= 1/3 for N= 100. The curves from top to bottom correspond to the three modes shown in a respectively from
bottom to top. d, The spectral weight for the lowest-energy composite-fermion exciton at ν= 1/3 at small q` for N= 50 and N= 100. All results in this
figure are for the Coulomb eigenstates χCF-ex

λ .

integral quantum Hall state, denoted by {8ex
λ,L}, where L is the total

orbital angular momentum of the exciton and λ labels different
excitons of the type shown in Fig. 1. We composite-fermionize
this basis to obtain {9CF-ex

λ,L }, which gives a set of basis functions
for composite-fermion excitons. We orthonormalize this basis and
diagonalize the Coulomb Hamiltonian to obtain the energies of
the physical excitations, and also their wavefunctions {χCF-ex

λ,L }. The
scalar products of various basis functions and the Hamiltonian
matrix elements are evaluated by the Metropolis Monte Carlo
method. Blocks of different L are not coupled by the interaction,
so can be diagonalized separately. More details can be found in
refs 16, 17 and Supplementary Information.

Even though our immediate interest is in understanding the
splitting of the collective mode at ν = 1/3, we consider, for
completeness, the three lowest collective modes at two filling
factors: 0→ 1, 0→ 2 and 0→ 3 modes at ν = 1/3, and 1→ 2,
1→ 3 and 0→ 2 modes at ν = 2/5. We have studied systems
with 50, 100 and 200 particles at both ν = 1/3 and ν = 2/5. The
results shown in Fig. 2a, b refer to the 200-particle system, which we
believe accurately represents the thermodynamic limit. The exciton
dispersions are quoted as a function of the wave vector q, defined
as q= L/R, where R=

√
Q is the radius of the sphere in the unit of

magnetic length `=
√
~c/eB. The dispersion curves are obtained by

averaging over 1.2×107 Monte Carlo iterations.
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Figure 3 | Overlaps between the ‘unorthogonalized’ exciton basis states.
Overlaps 〈9CF-ex

1,L |9
CF-ex
2,L 〉 (red circles), 〈9CF-ex

1,L |9
CF-ex
3,L 〉 (blue uptriangles)

and 〈9CF-ex
2,L |9

CF-ex
3,L 〉 (green downtriangles), where9CF-ex

λ,L are composite-
fermion exciton wavefunctions at ν= 1/3 before orthogonalization. (The
dispersions in Fig. 2a are obtained after orthogonalization of these modes
and diagonalizing the Coulomb Hamiltonian in the orthogonal basis.) The
overlaps are evaluated for N= 200.

The qualitative and quantitative features of experiment at
ν = 1/3 are nicely reproduced by our theory. Most strikingly,
in Fig. 2a all modes are seen to merge in the long-wavelength
limit. We note that this does not require any fine tuning of
parameters (the wavefunctions 9CF-g and 9CF-ex do not contain
any adjustable parameters) but is a robust effect in the composite-
fermion theory. To gain an insight into this merging, we compute
the overlap between 9CF-ex

1,L , 9CF-ex
2,L and 9CF-ex

3,L at ν = 1/3,
shown in Fig. 3 for N = 200; surprisingly, the overlaps approach
unity at small L, becoming precisely equal to 1 for L = 2 and
L = 3. (A comparison is not possible for L = 1 because, in the
spherical geometry, the smallest total orbital angular momentum
available for the n→ n+ λ exciton is λ.) We have tested this
result for many system sizes and believe that it holds in the
thermodynamic limit. This demonstrates that all three modes
become identical at small wave vectors, explaining why they merge
into a single mode at small wave vectors; the single mode at
q`= 0 is to be distinguished from two degenerate modes. When
the wavefunctions are linearly independent, multiple modes are
produced after orthogonalization.

Even though the composite-fermion exciton states obtained
from orthogonal collective modes of the integral quantum Hall
effect become exactly equal at L= 2 and 3 in our numerical study,
we have not succeeded in deriving this result analytically. The
wavefunctions are very complicated and the lowest-Landau-level
projection does not lend itself to simple analytical treatments. We
note that a Fock space reduction for excited states in going from
the integral quantum Hall effect to the fractional quantum Hall
effect has been found previously in another related context: for
total orbital angular momentum L= 1, the wavefunction for the
0→1 composite-fermion excitation is identically annihilated by the
lowest-Landau-level projection operator11.

For a quantitative confirmation, we compare the theoretical
splitting to the observed one. The light scattering experiments probe
only very small wave-vector exchanges, but with our large systems
we are able to make meaningful quantitative comparisons. The
experimental splitting at q`= 0.15, which is the largest wave vector

accessible in experiments, is approximately 0.009(3) e2/(ε`).
With 200 particles, the smallest wave vector directly accessible
is q` = 0.17, but from a smooth extrapolation of the theoretical
dispersion (assuming convergence at q` → 0), we obtain at
q` = 0.15 a splitting of 0.013(5) e2/(ε`), which is in very good
agreement with experiment, especially given the smallness of the
energy difference and the neglect, in our calculations, of disorder,
Landau-level mixing and finite-width effects, which are all expected
to slightly reduce the splitting.

The Raman intensity is proportional to the spectral weight,
given by Sq = (1/N )

∣∣〈χ ex
λ,L|ρL|9

CF-g
〉
∣∣2, where the density operator

at q= L/R is defined as ρL =
∑

iYL0(θi,φi) in terms of spherical
harmonics. Figure 2c shows our calculated spectral weights for
various orthogonal modes, suggesting that the collective modes
involving excitations across several 3 levels are expected to be
weaker than the fundamental mode. It is well known9 that in
the long-wavelength limit the leading term in the spectral weight,
proportional to (q`)2, is exhausted by the inter-Landau-level Kohn
mode at the cyclotron energy. We have explicitly verified that the
spectral weight of the lowest mode at ν = 1/3 goes as (q`)4 at
small wave vectors (Fig. 2d), which serves as an independent test
of the accuracy of the method. We believe that the same is true
for the other modes at ν = 1/3 as well, but have not confirmed
it explicitly because their much smaller spectral weights would
require substantially more computational time. In spite of the
small spectral weight, the intra-Landau-level collective modes can
be observable in resonant Raman scattering owing to a strong
resonant enhancement of thematrix elements18, although a detailed
theory is not yet available.

The relation of the results presented above to the so-called
two-roton mode is worth discussing. Motivated by a discrepancy
between the experimental and theoretical energies in the long-
wavelength limit5,12, previous theoretical studiesmodelled the long-
wavelength mode as a two-roton bound state9,19,20, which was
shown in explicit calculations19,20 to have a slightly lower energy
than the single exciton, bringing the theoretical energy closer to
the experimental one. The two-roton mode can also be interpreted
as the single exciton mode hybridized with excitations consisting
of two composite-fermion excitons; this is a natural interpretation
given that the energy of the two-roton bound state is close to
the single exciton energy (in the long-wavelength limit) and the
wavefunctions of the two are not orthogonal. The physics discussed
in the present work is distinct, in the sense that whereas the
two-roton physics deals with corrections to the energy of the
fundamental mode in the long-wavelength limit, the present work
is concernedwith the splitting of thatmode at finite wave vectors. In
fact, a mixing with excitations consisting of two composite-fermion
excitons will lower the energies of all of the collective modes
considered here, but we have not studied that effect because it is
unlikely to alter the amount of the splitting significantly.

The results presented above have a number of experimental
implications. The collective mode at ν = 1/3 is in fact seen to
split into several modes (rather than just two), although the higher
modes are very close in energy at small wave vectors and may not
be readily resolvable. Multiple modes are predicted also at ν= 2/5.
However, in contrast to ν = 1/3, the two lowest modes at ν = 2/5
do not merge in the long-wavelength limit; the composite-fermion
theory thus predicts an absence of splitting of the long-wavelength
collective mode at ν = 2/5. (This is to be contrasted with the
hydrodynamic approach10, which obtains similar behaviour for all
fractions.) Our theory also obtains the full dispersion of the new
collective modes, which is outside the range of Raman experiments,
but possibly observable in photoluminescence experiments in the
presence of a ‘grating’ produced by piezoelectric coupling to
certain frozen-in phonons, which picks out certain wave vectors
in absorption spectra21.
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