
LETTERS
PUBLISHED ONLINE: 1 FEBRUARY 2009 DOI: 10.1038/NPHYS1198

Quantum interference and Klein tunnelling in
graphene heterojunctions
Andrea F. Young and Philip Kim*

The observation of quantum conductance oscillations in
mesoscopic systems has traditionally required the confinement
of the carriers to a phase space of reduced dimensionality1–4.
Although electron optics such as lensing5 and focusing6

have been demonstrated experimentally, building a collimated
electron interferometer in two unconfined dimensions has
remained a challenge owing to the difficulty of creating
electrostatic barriers that are sharp on the order of the
electron wavelength7. Here, we report the observation
of conductance oscillations in extremely narrow graphene
heterostructures where a resonant cavity is formed between
two electrostatically created bipolar junctions. Analysis of the
oscillations confirms that p–n junctions have a collimating
effect on ballistically transmitted carriers8. The phase shift
observed in the conductance fringes at low magnetic fields is
a signature of the perfect transmission of carriers normally
incident on the junctions9 and thus constitutes a direct
experimental observation of ‘Klein tunnelling’10–12.

Owing to the suppression of backscattering13 and its amenability
to flexible lithographic manipulation, graphene provides an ideal
medium to realize the quantum engineering of electron wave-
functions. The gapless spectrum in graphene enables the creation
of adjacent regions of positive and negative doping, offering an
opportunity to study the peculiar carrier dynamics of the chiral
graphene quasiparticles8,10–12 and a flexible platform for the realiza-
tion of a variety of unconventional electronic devices14–17. Previous
experiments on graphene p–n junctions18–25 were limited in scope
by the diffusive nature of the transport beneath the local electro-
static gates; we overcome such limitations by fabricating extremely
narrow (∼20 nm) local gates strongly capacitively coupled to the
graphene channel (Fig. 1a,b). Electrostatics simulations based on
finite-element analysis (see Supplementary Information) show that
the carrier densities in the locally gated region (LGR) and the
‘graphene leads’—n2 and n1, respectively—can be controlled inde-
pendently by applying bias voltages to the top gate (VTG) and the
back gate (VBG). The width of the LGR, L, is defined as the distance
between the two zero-density points. As in previous studies21, the
conductance map as a function of VTG and VBG (Fig. 1c) can be
partitioned into quadrants corresponding to the different signs of
n1 and n2, with a lowered conductance observed when n1n2<0. The
mean free path in the bulk of the sample, lm &100 nm, was extracted
from the relation σ = (2e2/h)kFlm between the conductivity and
Fermi momentum, kF. As L . 100 nm within the experimentally
accessible density regime, we expect a significant portion of the
transport to be ballistic in the LGR.

In the bipolar regime, the diffusive resistance of the LGR is
negligible in comparison with the highly resistive p–n junctions;
as a result, the conductance does not increase with increasing
magnitude of the charge density in the LGR (ref. 22). We note
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that the magnitude of this conductance step is only ∼60% as large
as expected for a fully ballistic heterojunction even after taking
into account the enhancement of the junction transparency due
to nonlinear screening26; this suggests that there is still a large
diffusive component to the transport through the heterojunction.
Nevertheless, each trace exhibits an oscillating conductance as a
function of VTG when the carriers in the LGR and ‘graphene leads’
have opposite sign.

The regular structure of these oscillations is apparent when
the numerical derivative of the measured conductance is plotted
as a function of n1 and n2 (Fig. 2a). Although there is a weak
dependence of the oscillation phase on n1 reflecting the influence
of the back gate on the heterojunction potential profile, the
oscillations are primarily a function of n2, confirming their origin
in cavity resonances in the LGR. The oscillations, which arise
from interference between electron waves in the LGR, are not
periodic in any variables because of the strong dependence of
the LGR width, L, and junction electric field, E , on the device
electrostatics. Still, the conductance maxima are separated in
density by roughly1n2∼ 1×1012 cm−2, in agreement with a naive
estimate 1n2 ∼ (4

√
πn2/L) for the resonant densities in a cavity

of width L ∼ 100 nm. The application of an external magnetic
field shifts the phase of the oscillations, with individual oscillation
extrema moving towards higher density |n2| and the transmission
resonances appearing to be adiabatically connected to the high-field
Shubnikov–de Haas oscillations (Fig. 2d).

Graphene heterojunctions offer the opportunity to study an
old problem in relativistic quantum mechanics: the tunnelling of
relativistic electrons through a potential barrier10,11. In the context
of the graphene p–n junction, this ‘Klein tunnelling’ manifests as
the combination of the absence of backscattering with momentum
conservation parallel to a straight p–n interface: normally incident
particles, bound to conserve their transverse momentum, ky = 0,
and forbidden from scattering directly backwards, are predicted
to tunnel through such symmetric potential barriers with unit
probability. In contrast, particles obliquely incident on a barrier that
is smooth on the atomic lattice scale encounter classically forbidden
regions where the real part of the perpendicular momentum
vanishes. These regions, which form about the centre of individual
p–n junctions, transmit obliquely incident carriers only though
quantum tunnelling, leading to an exponential collimation of
ballistic carriers passing through graphene p–n junctions8,∣∣T (ky)∣∣2= e−π~vF k

2
y /(eE) (1)

where vF is the Fermi velocity of graphene.
Considerable experimental effort has been expended trying to

verify equation (1) by matching bulk resistance measurements
across a p–n junctions with their expected values19,22,24. Such an
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Figure 1 | Graphene heterojunction device schematic diagrams and conductance measurements. a, False-colour scanning electron microscope image of
a typical graphene heterojunction device. Electrodes, graphene and top gates are represented by yellow, purple and cyan, respectively. The scale bar is
2 µm. Inset: High-magnification view of top gate. The scale bar is 20 nm. b, Schematic diagram of the device geometry. The electrostatic potential created
by the applied gate voltages, VBG and VTG, can create a graphene heterojunction of width L bounded by two p–n junctions. GL: ‘graphene leads’. c, The inset
shows the conductance as a function of VTG and VBG. The main panels show cuts through this colour map in the regions indicated by the dotted lines in the
inset, showing the conductance as a function of VTG at fixed VBG. Traces are separated by a step in VBG of 1 V, starting from±80 with traces taken at
integer multiples of 5 V in black for emphasis.

approach can, at best, provide indirect evidence for the theoretically
predicted features of chiral tunnelling—collimation and perfect
transmission at normal incidence. In particular, there is no
way to distinguish perfect from near-perfect transmission from
a bulk resistance measurement, which is sensitive only to the
total transparency of the p–n junction. The quantum interference
experiments presented here enable a measurement not only of the
magnitude but also the phase of the transmission and reflection
coefficients. Interestingly, whereas the bulk of conduction in a
fully ballistic graphene p–n junction is expected to be dominated
by normally incident carriers, the absence of backscattering
precludes the contribution of such trajectories to the Fabry–Perot
resonances owing to perfect normal transmission at both interfaces.
Rather, the oscillatory conductance receives its largest contributions
from particles incident at angles where neither the transmission
probability, |T 2

|, nor the reflection probability, |R|2= 1−|T |2, are
too large (see, for example, marker 1 in Fig. 2c). Only transmission
near such angles contributes to the oscillatory conductance,
ensuring the survival of the oscillations despite the incident angle
averaging and enabling the determination of the width of the angle
of acceptance of an individual collimating p–n junction.

In a ballistic heterojunction, the application of a magnetic
field bends the carrier trajectories, resulting in an addition of an
Aharonov–Bohm phase to the interference and a modification of

the angle of incidence at each p–n junction. As was pointed out
recently9, such cyclotron bending leads to a direct experimental
signature of reflectionless tunnelling, which manifests as a phase
shift in the transmission resonances of a ballistic, phase coherent,
graphene heterojunction at finite magnetic field. These resonances
are described by the etalon-like ray-tracing diagrams shown in
Fig. 2b. The Landauer formula for the oscillating part of the
conductance is then

Gosc=
8e2

h

∑
ky

|T+|2|T−|2|R+||R−|cos(θWKB+1θrf)e−2L/lLGR (2)

where T± andR± are the transmission and reflection amplitudes for
the classically forbidden regions centred at x =±L/2, θWKB is the
semiclassical phase difference accumulated between the junctions
by interfering trajectories, 1θrf is the Klein backreflection phase
of the two interfaces and lLGR is the mean free path in the locally
gated region, a fitting parameter that controls the amplitude of the
oscillations (see Supplementary Information).

At zeromagnetic field, particles are incident at the same angle on
both junctions, and the Landauer sum in equation (2) is dominated
by modes that are neither normal nor highly oblique, as described
above. As the magnetic field increases, cyclotron bending favours

NATURE PHYSICS | VOL 5 | MARCH 2009 | www.nature.com/naturephysics 223
© 2009 Macmillan Publishers Limited.  All rights reserved. 

http://www.nature.com/doifinder/10.1038/nphys1198
http://www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS1198

¬4 0
n2 (1012 cm¬2)

n 1
 (

10
12

 c
m

¬
2 )

4

¬4

0

4

¬1 0
dG/dn2

dG/dn2

1

¬0.3 0
kx (nm¬1)

k y
 (

nm
¬

1 )

0

0.3

¬1 0 1

0

0
0

3

6

¬4n2 (1012 cm¬2) 4

B 
(T

)

0

3

6

¬2¬4¬0.15

B 
(T

)

0
ky (nm¬1)

0

1

2

0.15

0.15 0
|T+|

2|T¬|
2R+R¬

¬0.15

50 nm

1

1

2

2

3

3

a b

c d

Figure 2 | Density and magnetic-field dependence of the oscillatory conductance; origin of the Klein tunnelling phase shift. a, dG/dn2 as a function of n1

and n2. The scale bar is in arbitrary units. b, Schematic diagram of trajectories contributing to quantum oscillations in real and momentum space. The
dominant modes at low magnetic field (marker 1) give way, with increasing B, to phase-shifted modes with negative reflection amplitude due to the
inclusion of the non-trivial Berry phase (marker 3), near ky =0. The original finite ky modes are not yet phase shifted at this field (marker 2), but owing to
collimation, they no longer contribute to the oscillatory conductance. c, The prefactor in the Landauer sum, |T+|2|T−|2R+R−= |T+|2|T−|2|R+||R−|ei1θrf , as
a function of B and ky , plotted for the experimental parameters at VBG=50 V for n2= 3.5×1012 cm−2. The markers correspond to the trajectories shown in
b. Regions of negative sign correspond to trajectories containing the Klein backscattering phase shift. d, Magnetic-field dependence of dG/dn2 at
VBG= 50 V. Inset: Similar data taken at VBG=−50 V. The magnetic phase is proportional to the sign of the carriers; as a result, the oscillation extrema
precess in opposite directions for opposite signs of carriers in the LGR.

the contribution of modes with ky = 0, which are incident on the
junctions at angles with the same magnitude but opposite sign (see
markers 2 and 3 in Fig. 2c). In the case of perfect transmission at
zero incident angle, the reflection amplitude changes sign as the
sign of the incident angle changes9, causing a π shift in the phase
of the reflection amplitudes. Equivalently, this effect can be cast in
terms of the Berry phase: the closed momentum space trajectories
of the modes dominating the sum at low field and high ky do
not enclose the origin, whereas those at intermediate magnetic
fields and ky ∼ 0 do (Fig. 2b). Owing to the Dirac spectrum and
its attendant chiral symmetry, there is a topological singularity at
the degeneracy point of the band structure, kx = ky = 0, which
adds a non-trivial Berry phase of π to trajectories surrounding the
origin. As a consequence, the quantization condition leading to
transmission resonances is different for such trajectories, leading to
a phase shift in the observed conductance oscillations (that is, a π
jump in1θrf) as the phase-shifted trajectories begin to dominate the
Landauer sum in equation (2) (refs 27,28). For the electrostatics of

the devices presented here, the magnetic field at which this phase
shift is expected to occur is in the range B∗ =∼250–500mT (see
Supplementary Information), in agreement with experimental data
(see Fig. 3a). As the magnetic field increases further, the ballistic
theory predicts the disappearance of the Fabry–Perot conductance
oscillations as the cyclotron radius, Rc, shrinks below the distance
between p–n junctions, Rc . L, or B ∼ 2 T for our devices. We
attribute the apparent continuation of the oscillations to high
magnetic field to the onset of disorder-mediated Shubnikov–de
Haas type oscillations within the LGR.

To analyse the quantum interference contribution to the
ballistic transport, we extract the oscillating part of the mea-
sured conductance by first antisymmetrizing the heterojunction
resistance19 with respect to the density at the centre of the LGR,
G−1odd(|n2|) = G−1(n2)− G−1(−n2), and then subtracting a back-
ground conductance obtained by averaging over several oscillation
periods in n2, Gosc = Godd − Godd. The resulting fringe pattern
shows a marked phase shift at low magnetic field in accordance
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Figure 3 | Comparison of experimental data to the theoretical model, and temperature dependence. a, Magnetic-field and density dependence of the
oscillating part of the conductance at VBG= 50 V. Gosc as extracted from the experimental data (left panel) shows good agreement with a theoretical
model accounting for nonlinear screening26 (right panel) over a wide range of densities and magnetic fields. b, Cuts taken at B=0, 200, 400, 600 and
800 mT, corresponding to the coloured dashed lines in a; the dots represent data, the smooth lines are the result of the simulations. The sudden phase shift
that signals the presence of perfect transmission is indicated by dotted arrows. Curves are offset for clarity. c, Temperature dependence of the oscillation
amplitude in a similar device to that presented in the rest of the text. The oscillations (different curves are offset for clarity) weaken with rising
temperature, and are not observed above 80 K. At 4 K, the conductance modulations contain both the ballistic oscillations as well as aperiodic modulations
due to mesoscopic conductance fluctuations, which quickly disappear with increasing temperature. Inset: Averaged amplitude of several oscillations,
normalized by the amplitude at T=4 K.

with the presence of the Klein backscattering phase, with two
different regions—of unshifted and shifted oscillations—separated
by the magnetic field B∗ (see Fig. 3a). To carry out a quantitative
comparison between the measured oscillating conductance and
equation (2), we use numerical electrostatics simulations to deter-
mine the potential profile, which is then input into equation (2)
to generate a fringe pattern for comparison with experimental
data. We choose the free fitting parameter lLGR = 67 nm for this
comparison to best fit the oscillation amplitudes. Considering
possible degradation of the graphene in and around the LGR
during the fabrication of the local gates29, this value is consistent
with the estimate for the bulk mean free path. The resulting
theoretical calculation exhibits excellent quantitative agreement
with the experimental result at both zero and finite magnetic field
(Fig. 3a,b), both in themagnitude and period of the oscillations.We
emphasize that the value of L—which largely determines both the
phase and amplitude of the oscillations—varies by almost a factor
of three over the accessible density range, yet equation (2), faithfully
describes the observed experimental conductance modulations in
n2 as well as in B. Such remarkable agreement confirms that
the observed oscillatory conductance, which is controlled both
by the applied gate voltage and the magnetic field, results from
quantum interference phenomena in the graphene heterojunction.

Moreover, the oscillations exhibit a phase shift at B∗∼ 0.3 T, which
is the hallmark of perfect transmission at normal incidence, thus
providing direct experimental evidence for the ‘Klein tunnelling’ of
relativistic fermions through a potential barrier.

Finally, we turn our attention to the temperature dependence
of the quantum coherence effects described in the text, which we
observe at temperatures as high as 60K (Fig. 3c). An elementary
energy scale analysis suggests that the phase coherence phenomena
should be visible at temperatures of order (~vF/L)∼ 100K, when
thermal fluctuations become comparable to the phase difference
between interfering paths. In addition, the oscillation amplitude
is sensitive to the carrier mean free path, and we attribute
the steady waning of the oscillations with temperature to a
combination of thermal fluctuations and further diminution of
the mean free path by thermally activated scattering. The mean
free path in clean graphene samples can be as large as ∼1 µm
(ref. 30), and a reduction of the width of the heterostructure L
by an order of magnitude is well within the reach of modern
fabrication techniques; consequently, technological improvements
in the fabrication of graphene heterojunctions should lead to
the observation and control of quantum coherent phenomena
at much high temperatures, a crucial requirement for realistic,
room-temperature quantum device applications.
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Methods
Graphene sheets were prepared by mechanical exfoliation on Si wafers covered in
290 nm thermally grown SiO2. Ti/Au contacts 5 nm/35 nm thick were deposited
using standard electron beam lithography, and local gates subsequently applied
using a thin (∼10 nm) layer of hydrogen silsesquioxane (HSQ) as an adhesion
layer21 for low-temperature atomic layer deposition of 20 nm of HfO2, a high-k
dielectric (ε∼ 12) (see Fig. 1b). Palladium top gates not exceeding 20 nm in width
were deposited to ensure that a sizeable fraction of conduction electrons remained
ballistic through the LGR. Leakage current was measured to be ≤100 pA up to
VTG =±15V. All data except that in Fig. 3c were taken from the device shown in
Fig. 1a, which had a measured mobility ∼5,000 cm2 V−1 s−1. The data in Fig. 3d
were taken from a similar device in a four-terminal Hall bar geometry; extra
data from this device are shown in Supplementary Information. Several other
similar devices were also measured, showing qualitatively similar behaviour. The
conductance of the graphene devices was measured in a liquid-helium flow cryostat
at 4.2–100K using a standard lock-in technique with a current bias of 0.1–1 µAr.m.s.

at 17.7Hz. Unless otherwise specified, all measurements were done at 4.2 K. The
ratio CTG/CBG≈ 12.8 was determined from the slope of the Dirac ridge with respect
to the applied voltages, and similar values were obtained from the analysis of the
period of the Shubnikov–de Haas oscillations in magnetic field, which also served
to confirm the single-layer character of the devices. Finite-element electrostatics
simulations were carried out for the measured device geometries described above
with the thickness and dielectric constant of the HSQ adjusted such that the
simulations matched the observed values of CTG/CBG. The shape of the potential
and the strength of the electric field E used in fitting the experimental data were
constrained to lie within the confidence interval of the simulations, which in turn
were largely determined by uncertainty in the device geometry.
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