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Thermal-transport measurements in a quantum
spin-liquid state of the frustrated triangular
magnet κ-(BEDT-TTF)2Cu2(CN)3
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The notion of quantum spin-liquids (QSLs), antiferromagnets
with quantum fluctuation-driven disordered ground states, is
now firmly established in one-dimensional (1D) spin systems
as well as in their ladder cousins. The spin-1/2 organic
insulator κ-(bis(ethylenedithio)-tetrathiafulvalene)2Cu2(CN)3

(κ-(BEDT-TTF)2Cu2(CN)3; ref. 1) with a 2D triangular lattice
structure is very likely to be the first experimental realization
of this exotic state in D≥ 2. Of crucial importance is to unveil
the nature of the low-lying elementary spin excitations2,3,
particularly the presence/absence of a ‘spin gap’, which
will provide vital information on the universality class of
this putative QSL. Here, we report on our thermal-transport
measurements carried out down to 80 mK. We find, rather
unexpectedly, unambiguous evidence for the absence of a
gapless excitation, which sharply contradicts recent reports of
heat capacity measurements4. The low-energy physics of this
intriguing system needs be reinterpreted in light of the present
results indicating a spin-gapped QSL phase.

In antiferromagnetically coupled spin systems, geometrical
frustrations enhance quantum fluctuations. Largely triggered
by the proposal of the resonating-valence-bond theory for
S = 1/2 degrees of freedom residing on a frustrated two-
dimensional (2D) triangular lattice5–7 and its possible appli-
cation to high-Tc cuprates with a doped 2D square lattice8,9,
realizing/detecting QSLs in 2D systems has been a long-
sought goal. Recently, discoveries of QSL states on S = 1/2
triangular lattices have been reported in organic compounds,
κ-(BEDT-TTF)2Cu2(CN)3 (Fig. 1, inset)1,10,11, C2H5(CH3)3Sb
[Pd(1,3-dithiole-2-thione-4,5-dithiolate)2]2 (ref. 12) and 3He thin
film on graphite13. In particular, the NMR spectrum of
κ-(BEDT-TTF)2Cu2(CN)3 exhibits no signs of magnetic ordering
down to ∼30mK, which is some four orders of magnitude below
the exchange coupling J ∼250K (refs 1,11). These findings aroused
great interest because it is generally believed that whereas a QSL
state is realized in the strongly frustrated S = 1/2 2D kagome
lattice14, which can be viewed as corner-sharing triangles, the
classical magnetically ordered state is stable in the less frustrated
isotropic Heisenberg triangular lattice15,16. Several ideas, such as
a Hubbard model with a moderate onsite repulsion17, a ring
exchangemodel18 and one-dimensionalization by a slight distortion
from the isotropic triangular lattice19,20, have been put forth
to explain the absence of the long-range magnetic ordering in
κ-(BEDT-TTF)2Cu2(CN)3. Nevertheless, the origin for the QSL
state remains unresolved.
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Figure 1 | Temperature dependence of the in-plane thermal conductivity
below 10 K. κ(T) in zero field for two different single crystals of deuterated
κ-(BEDT-TTF)2Cu2(CN)3 (sample A and sample B) measured in a 3He
cryostat (black for sample A and green for sample B) and dilution
refrigerator (blue for sample A and light green for sample B). As the
temperature is lowered, κ(T) decreases and exhibits a broad hump starting
to increase at around T∗'6 K. Inset: The crystal structure of a
two-dimensional BEDT-TTF layer of κ-(BEDT-TTF)2Cu2(CN)3 viewed
along the long axes of BEDT-TTF molecules. Pairs of BEDT-TTF molecules
form dimers arranged in a triangular lattice in terms of transfer integrals t
and t′ between the dimers. The ratio of transfer integrals is nearly unity11

and the spin-1/2 nearly isotropic triangular lattice is realized1.

To understand the nature of novel QSL states, knowledge
on the structure of the low-lying excitation spectrum in the
zero-temperature limit, particularly the absence/presence of a spin
gap, is indispensable, bearing immediate implications on the spin
correlations of the ground state, as well as on the quantum
numbers carried by each elementary excitation. For instance in 1D,
half-integer spin Heisenberg chains feature a massless spectrum,
which enables proliferation of low-energy spinon excitations,
whereas such excitations are suppressed in the integer spin case,
which has a massive spectrum21.
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Figure 2 | Thermal conductivity in the low-temperature region. Thermal
conductivity divided by temperature plotted as a function of T2 below
300 mK in zero field (blue for sample A and green for sample B) and at
µ0H= 10 T (red, sample A) applied perpendicular to the basal plane.
Convex and non-T2 dependent κ/T is observed for both crystals. κ/T of
sample A at 10 T shows a nearly parallel shift from that in zero field. It is
immediately obvious that κ/T for all data vanishes as extrapolating to
T→0 K, indicating the absence of the gapless fermionic excitations. This is
in sharp contrast to the specific-heat measurements, which claim the
presence of gapless excitations4.

As it is not possible to directly probe the microscopic spin
structure using neutron scattering owing to the compound’s
organic nature, thermodynamic measurements must be adopted to
unveil the low-lying excitation of κ-(BEDT-TTF)2Cu2(CN)3. Very
recent specific-heat measurements of κ-(BEDT-TTF)2Cu2(CN)3
show a large linear temperature-dependent contribution,
γ ∼ 15mJK−2 mol−1 (ref. 4), which suggests the presence of
gapless excitations, similar to the electronic specific heat in metals.
This observation provides strong support for several theoretical
models, including a QSL with gapless ‘spinons’, which, like its
1D predecessors are (fermionic) elementary excitations that carry
spin-1/2 and zero charge2,3, which are to be compared with
conventional (bosonic) magnons that carry spin-1. However, it is
premature to conclude that the QSL in κ-(BEDT-TTF)2Cu2(CN)3
is gapless from these measurements because the specific-heat data
are plagued by a very large nuclear Schottky contribution below 1K
(ref. 4), whichwould necessarily lead to ambiguity. Incorporation of
a probe that is free from such a contamination is strongly required22.

As pointed out in ref. 3, thermal conductivity (κ) measurements
are highly advantageous as probes of elementary excitations in
QSLs, because κ is sensitive exclusively to itinerant excitations and
is totally insensitive to localized entities such as are responsible
for Schottky contributions. The heat is carried primarily by
acoustic phonons (κph) and magnetic contributions (κmag). Indeed,
a large magnetic contribution to the heat current is observed in
low-dimensional spin systems23,24.

As shown in Fig. 1, the thermal conductivity exhibits an
unusual behaviour characterized by a hump structure around
T ∗ ' 6K. A similar hump is observed in the magnetic part of the
specific heat4 and NMR relaxation rate1,10 around T ∗, although
no structural transition has been detected. These results obviously
indicate that κmag occupies a substantial portion in κ . Various
scenarios, such as a crossover to a QSL state4, a phase transition
associated with the pairing of spinons2, spin-chirality ordering25,
Z2 vortex formation26 and exciton condensation27, have been
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Figure 3 | Comparison between the data and the theory based on the
gapless QSL with a spinon Fermi surface. κ/T data (sample A) in zero
field (blue) plotted together with expected dependence of equation (1). The
green line is for the clean limit (1/τ =0) and brown for a dirty case with the
mean free path as short as 10a, where a('0.8 nm) is the lattice parameter
of the triangular lattice.

suggested as a possible source of the anomaly at T ∗ and warrant
further studies.

The thermal conductivity at µ0H = 0 and 10 T in the
low-temperature regime (T < 300mK) is shown in Fig. 2. A
striking deviation of κ/T from a T 2 dependence is observed for
both samples; both curves exhibit a convex trend. At such low
temperatures, the mean free path of phonons is as long as the
crystal size and κph/T has a T 2 dependence, which has indeed
been reported in a similar compound κ-(BEDT-TTF)2Cu(NCS)2
(ref. 28). Therefore, the observed non-T 2 dependence, together
with the fact that κ is enhanced by magnetic field, definitely
indicates the substantial contribution of κmag in κ even in this
T range.

The results shown in Fig. 2 provide key information on the
elementary excitations from the QSL state of κ-(BEDT-TTF)2Cu2
(CN)3. Most importantly, it is extremely improbable from the
experimental data that κ/T in the T → 0K regime has a finite
residual value for data of both samples in zero field and that
of sample A under 10 T. (Indeed, a simple extrapolation of both
data in zero field even gives a negative intersect.) These results
lead us to conclude that κ/T vanishes at T = 0K. It should be
stressed that the vanishing κ/T immediately indicates the absence
of low-lying fermionic excitations, in sharp contrast to the finite γ
term reported in the heat capacity measurements4. We believe that
the heat capacity measurements incorrectly suggest the presence of
gapless excitation, possibly owing to the large Schottky contribution
at low temperatures.

The present conclusion is reinforced by comparing the data with
the thermal conductivity calculated by assuming a spinon Fermi
surface with gapless excitations3, which is given as

κ

T
=

[
~
k2B

(
kBT
εF

)2/3

+
mA
k2B

1
τ

]−1
1
d
, (1)

where εF is the Fermi energy, m is the electron mass, A is the
unit cell area of the layer, d is the interlayer distance and τ is the
impurity scattering time. Estimating εF= J as in 1D spin systems29,
we compare our result with equation (1) as shown in Fig. 3. It is
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Figure 4 |An Arrhenius plot of the thermal conductivity in the
low-temperature region. Inset: logκmag (sample A) in zero field plotted
against logT estimated for several values of κph (=0 (blue), 1/2 (green)
and 3/4 (orange) of κ at 100 mK) assuming a cubic temperature
dependence of κph. In the same figure, the exponent n= (dlogκ/dlogT)
obtained by assuming a power-law dependence of κ ∝ Tn is also plotted
(κph=0 (blue), 1/2 (green), 3/4 (orange) of κ at 100 mK). Main panel: An
Arrhenius plot of κ of sample A (κ ∝ exp(−∆/kBT)) in zero field and at
µ0H= 10 T. Activation-type behaviour can be seen for both data. The
dashed–dotted and dotted lines are fits to equation (1) with
α=0.12 W K−1 m−1, β =0.51 W K−4 m−1 and ∆=0.46 K for 0 T, and with
α=0.081 W K−1 m−1, β =0.64 W K−4 m−1 and ∆=0.38 K for 10 T,
respectively. The green and orange show the same data as in the inset and
the fittings for αe−∆/kBT give α=0.087 W K−1 m−1, ∆=0.45 K and
α=0.048 W K−1 m−1, ∆=0.43 K, respectively.

evident that equation (1) yields κ/T that increases with decreasing
T for both clean and dirty cases and is opposite to the observation.
Moreover, to obtain the same magnitude of κ/T in this model at
the lowest temperature, we need to assume that the mean free path
is only a few times longer than the lattice constant a. However,
such a large concentration of the impurity is highly unlikely in this
clean system1. Thus, the theory based on a gapless fermionic spinon
picture is incompatible with the present results, although it may be
applicable to other systems.

Having established the absence of the low-lying fermionic
excitations, we turn to amore detailed analysis of the T dependence
of κ . As seen in the inset of Fig. 4, where logκmag is plotted against
logT , κmag does not show a power-law dependence on T . As the
precise value of κph is unknown, κmag(= κ − κph) is estimated for
several values of κph. For each case, no linear relation is observed in
this log–log plot. It should be noted that when κph is increased, the
nonlinearity becomes more pronounced. This is also manifested by
the index n= (dlogκ/dlogT ) plotted in the same figure where n
increases steeply with decreasing temperature, and subtracting κph
from the observed κ even enhances the non-power-law behaviour.
Thus, in spite of the ambiguity for estimating κph, we can safely
conclude that κmag at low temperatures does not exhibit a power-law
temperature dependence. These results place further constraints on
the theoretical description of the excitation spectrum; for example,
the nodal excitations that may be expected in systems with an
anisotropic gap structure2 which will give rise to a power-law
dependence of κ on T , in analogy to the quasiparticles in d-wave
superconductors, are also absent.

The absence of the gapless excitation implies the presence of a
spin gap in the excitation spectrum. To estimate the magnitude of

the spin gap, we try to fit the data to

κ =αexp(−∆/kBT )+βT 3,

as shown in an Arrhenius plot in Fig. 4. The best fit for the 0
(10) T data gives ∆ = 0.46 (0.38) K and a β-value that implies
that κph is roughly 1/4 of the total κ at 100mK. We note that the
amplitude of ∆ is little affected by the choice of κph (see Fig. 4). As
the Arrhenius-type behaviour is observed in only one order range
of κ , the estimation of the gap size may have a large ambiguity.
Nevertheless, we can safely conclude that the estimated gap value
from Fig. 4 is strikingly small compared with J (∆∼ J/500) and
insensitive to magnetic fields.

This field insensitivity is consistentwith a theory of a gappedQSL
(ref. 7) with a finite energy gap for bothmagnetic and non-magnetic
excitations. On the other hand, the tiny gap value may alternatively
be attributed to a proximity to a quantum critical point of Z2 spin-
liquid27, or as a result of a slight anisotropy of J (ref. 19).However, at
present, the origin of the spin gap is an open question. It is tempting
to associate the extremely small gap value with kBT ∗(� J ) (instead
of to J itself), which may be a characteristic temperature of the QSL
of κ-(BEDT-TTF)2Cu2(CN)3. In any case, our low-temperature
thermal-transport measurements demonstrate that the fermionic
spinons, if present, will experience an instability in this system,
which will generate a small gap in the spin excitation spectrum.

Methods
κ-(BEDT-TTF)2Cu2(CN)3 single crystals were grown by the electrochemical
method. The thermal conductivity was measured by a standard steady-state
method with a one-heater–two-thermometer configuration in 3He and dilution
refrigerators. The thermal current was applied within the 2D plane and the
magnetic field was applied perpendicular to the plane. We have measured several
deuterated and non-deuterated crystals and observed no significant sample
dependence. It has been reported that in superconductors, thermal decoupling
between the electron and phonon conductions can be caused by the poor contacts
at very low temperatures30. It could be argued that such a decoupling may occur
in the phonons and the spinons, and may lead to apparent absence of finite κ/T
at T→ 0K. However, we note that this is inconsistent with the observed increase
of κ with H (shown in Supplementary Information). Because the magnetic field
decreases the number of spinons, κ should decrease with H owing to the further
reduction of the coupling. Moreover, we measured the thermal conductivity on the
samples with the contact resistance ranging from 1 to 20� and found no serious
difference in the thermal conductivity at low temperatures.
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