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Tomography of quantum detectors
J. S. Lundeen1*, A. Feito2,3, H. Coldenstrodt-Ronge1, K. L. Pregnell2,3, Ch. Silberhorn4, T. C. Ralph5,
J. Eisert2,3, M. B. Plenio2,3 and I. A. Walmsley1*
Measurement connects the world of quantum phenomena
to the world of classical events. It has both a passive
role—in observing quantum systems—and an active one, in
preparing quantum states and controlling them. In view of
the central status of measurement in quantum mechanics,
it is surprising that there is no general recipe for designing
a detector that measures a given observable1. Compounding
this, the characterization of existing detectors is typically
based on partial calibrations or elaborate models. Thus,
experimental specification (that is, tomography) of a detector
is of fundamental and practical importance. Here, we present
the realization of quantum detector tomography2–4. We identify
the positive-operator-valued measure describing the detector,
with no ancillary assumptions. This result completes the triad,
state5–11, process12–17 and detector tomography, required to
fully specify an experiment. We characterize an avalanche
photodiode and a photon-number-resolving detector capable of
detecting up to eight photons18. This creates a new set of tools
for accurately detecting and preparing non-classical light.

The reduction of the quantum state of a system bymeasurement,
as postulated by von Neumann, is now generally accepted
to be a limiting case of a more general theory of quantum
measurement that involves state reduction on an extended
Hilbert space encompassing the system and an (possibly fictional)
ancilla. However, even within this general theory, it is not
known how to incorporate the complete chain of apparatus
components in a derivation of the actual measurement: as
Braginsky has written, ‘‘the Schrödinger equation cannot tell us
the connection between the design of the measuring device and
the nature of the measurement’’1. Measurement is increasingly
becoming a driving component in quantum technologies such
as super-resolution metrology19, Heisenberg-limited sensitivity20
and quantum computing21. Input states and dynamical processes
are accepted as resources for quantum technologies and therefore
the techniques of quantum state tomography5–11,22 and quantum
process tomography12–17,23 have been developed to measure them.
A distinct omission is that of the experimental tomography of
detectors, which would enable more accurate classification of
measurement types, objective comparison of competing devices and
precise design of new detectors. This omission is evenmore striking
given that the tomography of states and processes are predicated on
a well-characterized detector. Here, we extend previous theoretical
descriptions of detector tomography2–4 to include regularization
and to accommodate the classical uncertainties of the experimental
apparatus. We apply this theory to the characterization of two
quantum detectors.

Characterizing a detector consists of determining its correspond-
ing positive-operator-valued measure (POVM). Given an input
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state ρ, the probability pn,ρ of obtaining detection outcome n is

pn,ρ = tr[ρπn], (1)

where {πn} is the detector POVM. In state tomography, an
unknown ρ is characterized by carrying out a set of known
measurements, each on many identical copies of the state to
estimate pn. From this estimate, one can invert equation (1) to find
ρ. The interchangeability of ρ and πn in equation (1) shows that
detector tomography has a dual role to state tomography. Now,
measuring a set of known probe states {ρ} enables us to characterize
an unknown detector, and thus find {πn}. For these operators to
describe a physical measurement apparatus, they must be positive
semi-definite, πn≥0, and

∑
nπn= I , ensuring positive probabilities

that add up to one. In addition, the operators {ρ}must be chosen to
be tomographically complete, that is, form a basis for the operator
space of πn.

In the specific case of optical detectors, lasers provide us with an
ideal tomographic probe: the coherent state |α〉. By transforming
the magnitude |α| through attenuation (for example, with a beam
splitter) and the phase arg(α) by optical delay, we can create a
tomographically complete set of probe states {|α〉〈α|}. Remarkably,
with coherent state probes, the measured statistics are themselves
a full representation of the detector. The measurement outcomes
sample the function

Qn(α)=
1
π
〈α|πn|α〉=

1
π
pn,α. (2)

This is, in fact, a definition of the well-known Q-function
representation of the POVM element2. As Qn(α) contains the same
information as the element πn itself, estimation of this function
constitutes detector tomography. Predictions of the detection
probabilities for arbitrary input states can then be calculated directly
from the Q-function representation. Unfortunately, experimental
errors and statistical fluctuations can cause a simple fit to the
Q-function to be consistent with unphysical POVM elements.
Owing to this, we ultimately wish to directly find the POVM
elements {πn} that are closest to the measured statistics, while
constraining them to be physical.

We now turn to the description of the experimental realization,
shown in Fig. 1 (see the Methods section). The first detector was
a commercial single-photon counting module based on a silicon
avalanche photodiode (APD). It has two detection outcomes, either
outputting an electronic pulse (1 click) or not (0 clicks). Past
evaluation of the detector has shown that the 1-click outcome
is mainly associated with the arrival of one or more photons,
although dark counts and afterpulsing can also create this outcome.
The 0-click event is mainly associated with vacuum at the input
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Figure 1 | The experimental set-up. A half-wave plate (λ/2) and
Glan–Thompson polarizer (P) are used to vary the amplitude of the probe
coherent state, which is subsequently attenuated by neutral density filters
(NDF) and coupled into a fibre (FC). See the Methods section for
more details.

or photons lost owing to non-unit efficiency of the photodiode.
Having only two outcomes, this detector cannot directly measure
the incoming photon number if it is above one. The second
detector circumvents this by splitting the incoming pulse intomany
spatially or temporally separate bins, making unlikely the presence
of more than one photon per bin. Subsequently all of the bins
are detected with two APDs. Photon-number resolution results by
summing the number of 1-click outcomes from all of the bins. This
time-multiplexed detector (TMD) is not commercially available but
can be constructed with standard tools18. Ours has eight bins in
total (four time bins in each of two output fibres) and thus nine
outcomes—from zero to eight clicks, making it capable of detecting
up to eight photons. The added complexity and greater number
of outcomes of this detector provide a more challenging test for
detector tomography.

For both detectors, we first allowed the phase of α to drift.
We observed no variation in the outcome frequencies, as expected
from a detector without a phase reference. This simplifies the
experimental procedure, requiring us to control only themagnitude
of α (as has been done for tomography of a single photon24). A
detector with no observed phase dependence will be described by
POVM elements diagonal in the number basis,

πn=

∞∑
k=0

θ
(n)
k |k〉〈k|, (3)

simplifying henceforth the reconstruction of πn.
For a POVM set {πn} containing only diagonal matrices as in

equation (3) that are each truncated at a number state M , we can
rewrite equation (2) as a matrix equation,

P = FΠ .

For an N -outcome detector, PD×N contains all of the mea-
sured statistics, FD×M contains the D probe states α,α1, ... ,αD
and ΠM×N contains the unknown POVM set (matrix sub-
scripts are the matrix dimensions). For a coherent state probe,
Fi,k = (|αi|2k exp(−|αi|2)/k!). This can easily be reformulated for a
probe in amixed state, as was done tomodel the laser technical noise
(see the Methods section). The physical POVM consistent with the
data can be estimated through the following optimization problem:

min
{
||P−FΠ ||2+g (Π )

}
,

subject to πn≥ 0,
N−1∑
n=0

πn= I , (4)

where the 2-norm of amatrixA is defined as ||A||2= (
∑

i,j |Ai,j |
2)1/2.

We regularize the inversion by means of an extra constraint: the
specification of a convex quadratic function g , independent of the
type of detector, that smooths fluctuations with respect to photon
number from element to element of the POVM. This is a convex
quadratic optimization problem, and hence also a semi-definite
problem25 which can be efficiently solved numerically. Moreover,
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Figure 2 | The detector tomography data. The outcome statistics (red
dots) are measured as a function of the coherent state magnitude |α|2 and
form an estimate of pn,α for each detector outcome n (number of clicks).
As they are proportional to the Q-function Qn(α) for each outcome, the
statistics directly fully characterize the detector. The main plot corresponds
to the TMD with nine outcomes and the inset corresponds to the APD. The
vertical statistical error is too small to be seen. From the reconstructed
POVM elements {πn}, we generate the corresponding probabilities
pn,α =〈α|πn|α〉 (blue curves).

in this case, there exists a dual optimization problem in which
the solution coincides with the original problem. Thus, the dual
problem provides a certificate of optimality that we use to verify
our solution. This procedure identifies the optimal POVM for this
cost function.

The measured statistics for each detector outcome (that is,
the number of clicks) are shown in Fig. 2 for the TMD and
for the APD. The distributions (equivalent to the Q-function
Qn(α) of the detector) show smooth profiles and distinct photon
number ranges of sensitivity for increasing number of clicks in
the detector. Figure 3 shows the diagonals (the off-diagonals are
zero for these phase-insensitive detectors) of the POVMs that
result from optimization of equation (4) (see the Methods section
for g (Π )). Note that πn, being the POVM element for n clicks,
shows nearly zero amplitude for detecting less than n photons,
exhibiting essentially no dark counts. Prominent in an otherwise
smooth distribution, this sharp feature provides the detector with
its discriminatory power: n clicks guarantees that there were at least
n photons in the input pulse. To assess the performance of the
tomography, we find the difference (yellow bars in Fig. 3) between
the estimated POVM elements π rec

n and a previously developed
simple theoretical model of a TMD, π teo

n (ref. 26; see the Methods
section). The fidelity F = tr((

√
π teo
n π rec

n
√
π teo
n )1/2)2 ≥ 98.7% for all

n, indicating excellent agreement between the two.
To visualize the action of the detector, in the special case of

optical detectors one can plot a Wigner function of each of the
reconstructed POVM elements, Wn(α,α∗). The response of the
detector to an input state with Wigner functionWψ is proportional
to the overlap, pn,ψ =

∫
WnWψ dαdα∗. We focus on the one-click

Wigner function W1(α,α∗) for the APD (Fig. 4a) and the TMD
(Fig. 4b). An APD detector is sometimes regarded as a ‘single
photondetector’, but herewe can see themarked difference between
the two Wigner functions. Instead, it is the TMD that has a fidelity
of 98% with a single photon (having experienced a 52.2% loss).
Conversely, the APD Wigner function extends to α� 1, having
significant overlap with photon number states>1. Therefore, to use
an APD as a ‘single-photon detector’ one must make the ancillary
assumption that the input beam has insignificant components
containing more than one photon. Despite their differences, both
Wigner functions have negative values near the origin, indicating
the absence of a classical optical analogue. Consequently, these are
both fundamentally quantum detectors.
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Figure 3 | Optimal physical POVMs. a,b, The diagonals of the
reconstructed POVMs represented in the photon-number basis for the
photon-number-resolving TMD (a) and the binary APD detector (b). The
TMD POVM elements were obtained up to basis state |60〉〈60| (therefore
M=60), but are shown only up to |30〉〈30| for display purposes. The APD
POVM elements are shown in full. Stacked on top of each θ (n)

i ,
|θ (n)(rec)
i −θ (n)(teo)

i | is shown in yellow, where n is the number of clicks, and
rec and teo are the reconstructed and theoretical diagonals of POVM
element, πn. The theoretical TMD and APD models are described in the
Methods section.

As quantum technologies advance, detectors are becomingmore
complex, making a black-box approach to their characterization
an important tool. Identifying the exact operations of detectors
will benefit precision tasks, such as state tomography or metrology.
By eliminating assumptions, full characterization enables more
flexible design and use of detectors, be they noisy, nonlinear,
inefficient or operating outside their normal range. With precise
characterization, we can ask precise quantitative questions about
our power to prepare non-classical states or herald quantum
operations21. This opens a path for the experimental study
of yet unexplored concepts such as the non-classicality of
detectors. For optical detector tomography, a promising avenue
for research will be to transfer well-established techniques from
homodyne tomography (for example, balanced noise-reduction,
direct measurement of the Wigner function or pattern functions).
Now that it is well characterized, the photon counter also
provides a unique tool for carrying out non-Gaussian operations,
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Figure 4 | The Wigner functions of the ‘one click’ detector outcomes.
a,b, From the diagonal elements of π1 for the APD (a) and TMD (b) one can
generate the Wigner function representing their measurement of the
optical mode.

which are critical for quantum information processing using
the electromagnetic field as the information carrier27,28. As
superconducting and semiconductor photon number counters are
developed, tomography could be used as an objective benchmark
to compare competing devices. Moreover, for one of these
photon number counters, only an incomplete and empirical model
is available29, making detector tomography the best option to
completely determine its action. We expect detector tomography
will become the standard for the adequate calibration of all
measurement and state preparation devices.

Methods
Experimental set-up. Pulses of a mode-locked laser travel through a half-wave
plate (λ/2) and a Glan–Thompson polarizer with which we varied their
amplitude α. We subsequently sent the pulses through a beam splitter (T = 95%).
The reflected beam travelled through three neutral-density (that is, spectrally
flat) filters before being coupled into a single-mode fibre. The attenuation from
all elements, the reflection off the beam splitter, each of the filters, and fibre
coupling, were measured individually with a calibrated power meter, resulting in
a total attenuation γ . This power meter was then placed in the transmission port
of the beam splitter so that the magnitude of α for the probe state in the fibre
was found from P , the measured time-averaged power and the pulse rate R via
|α|2 = γPλ/(2πR~c). For each value of α, we recorded the number of times each
detection outcome occurred in J trials (that is, laser pulses), which provides an
estimate of pn,α .

Source of light and technical noise. The input states were generated by a
mode-locked Ti:sapphire laser with centre wavelength λ and a full-width at
half-maximum bandwidth of 1λ specifically chosen for each detector. It was
cavity dumped to reduce its repetition rate R to be compatible with tested
detectors. Long-term drift of the intensity over 1 million pulses was <0.5%. To
characterize it, a NIST-calibrated Coherent FieldMaxII-TO power meter was
used (systematic error of 5%). In the case of the APD detector (a Perkin Elmer
SPCM-AQR-13-FC), we set λ=780±1 nm,1λ=20 nm, and chose the appropriate
rate R= 1.4975±0.0005 kHz, J = 1472967 and γ = (5.66±0.08)×10−9. For
the TMD detector, we set λ= 789±1 nm, 1λ= 26 nm, R= 76.169±0.001 kHz,
J = 38,084 and γ = (8.51±0.11)×10−9. We now evaluate the importance to
our tomography of the technical noise found at some level in all lasers. Our
laser randomly varies in energy between subsequent pulses with a standard
deviation of 1.88%±0.02% of |α|2. Attenuated to the single-photon level, as in
this experiment, one might expect the inherent large fractional uncertainty in the
coherent state to render this technical noise insignificant. We test this expectation
by modelling the pulse distribution as a Gaussian fα(β)= e−(β−α)2/(2σ 2)/(σ

√
2π)

centred around α in phase space, with a variance approximately equal to that
measured, σ 2

= 0.0004|α|4. Each probe state is then best described by a mixture of
coherent states,

ρ〈α〉 =

∫
d2β|β〉〈β|fα(β)

=

∞∑
l,m=0

El,m,α |l〉〈m|,

where

Ej,m,α =
1

σ
√
2π
√
l!m!

∫
β l+me−β

2
−(β−α)2/(2σ 2) dβ.
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The detection probability for outcome n is then

p〈α〉,n=
∞∑
k=0

Ek,k,αθ
(n)
k .

Comparing our analysis done with pure input states |α〉〈α| to that done with mixed
states ρ〈α〉, we find the difference between the POVMs obtained was negligible.
For example

||Πpure−Πmixed||2

||Πmixed||2
≤ 0.7%

and the largest relative difference between any two θ (n)k coming from a mixed-state
or a pure-state derivation was 1.3%. Furthermore, the reconstructed probability
distributions are so close that they are indistinguishable on the scale of Fig. 1. This
reinforces our earlier expectation that technical noise in the laser will be negligible
when using single-photon-level coherent states. This differs from homodyne
tomography where technical noise can shift a strong local oscillator to a nearly
orthogonal state.

Discussion of regularization. Care has to be taken that the optimization problem
is well conditioned to find the true POVM of the detector. In finding the
number basis representation, we are deconvolving a coherent state from our
statistics, which is intrinsically an ill-conditioned problem. Similar issues of
conditioning have been discussed in the context of state and process tomography,
see, for example, refs 30,31. Owing to a large ratio between the largest and
smallest singular values of the matrices defining the quadratic problem, small
fluctuations in the probability distribution can result in large variations for the
reconstructed POVM. This can result in operators that closely approximate
the outcome statistics and yet contain errant spikes in their distribution in
photon number. To suppress this effect, we penalize the difference θ (n)k − θ

(n)
k+1

(independent of the shape of the POVM) by using the regularization g = yS with
S =

∑
k,n[θ

(n)
k −θ

(n)
k+1]

2. This is motivated by the fact that any realistic detector
will have a finite efficiency η, which necessitates a smooth θ (n)k distribution:
if G(r) is the probability of registering r photons and H (q) is the probability
that q were present then, G(r)=

∑
q(
q
r )η

r (1−η)q−rH (q). Consequently, if
θk 6= 0 then θk+1, θk+2 and so on cannot be zero, but will follow some smooth
distribution. As we do not assume any knowledge about the precise loss of
our detector, we simply choose an arbitrary value for y . Varying y by three
orders of magnitude hardly affects the exact value of the estimated POVM,
changing it by only 10%. Furthermore, the regularization g = yS also proves
to be robust to noise up to δ = 0.2 (varying α→ α(1+ δ) across {|α〉〈α|}
with a Gaussian distribution for δ). This shows that the regularization’s main
effect is to suppress the ill-conditioning and noise while leaving the POVM
fitting unaffected.

The theoretical model of the detector. Detector tomography does not make use
of any physical model on the functioning of the detector. To verify the success of
this approach, we have compared the outcome of the estimation to those POVM
elements obtained from a theoretical model of the APD and TMD (ref. 26). The
APD is treated as a binary detector with a loss of 43.2%. The theoretical TMD
assumes no dark counts, three sequential beam splitters with experimentally
inferred reflectivities, 50.18%, 50.60% and 41.92%, and an overall loss of 52.2%
(that best fits the data), followed by two perfect APDs.
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