Letter

Coulomb correlations and the Wigner–Mott transition

  • Nature Physics volume 4, pages 932935 (2008)
  • doi:10.1038/nphys1106
  • Download Citation
Received:
Accepted:
Published online:

Abstract

Strong correlation effects, such as a marked increase in the effective mass of the carriers of electricity, recently observed in the low-density electron gas1 have provided spectacular support for the existence of a sharp metal–insulator transition in dilute two-dimensional electron gases2. Here, we show that strong correlations, normally expected only for narrow integer-filled bands, can be effectively enhanced even far away from integer-filling, owing to incipient charge ordering driven by non-local Coulomb interactions. This general mechanism is illustrated by solving an extended Hubbard model using dynamical mean-field theory3. Our findings account for the key aspects of the experimental phase diagram, and reconcile the early viewpoints of Wigner and Mott. The interplay of short-range charge order and local correlations should result in a three-peak structure in the electron spectral function, which can be observed in tunnelling and optical spectroscopy. These experiments will discriminate between the Wigner–Mott scenario and the alternative perspective that views disorder as the main driving force for the two-dimensional metal–insulator transition4.

  • Subscribe to Nature Physics for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    & Metal–insulator transition in two-dimensional electron systems. Rep. Prog. Phys. 67, 1–44 (2004).

  2. 2.

    , & Colloquium: Metallic behavior and related phenomena in two dimensions. Rev. Mod. Phys. 73, 251–266 (2001).

  3. 3.

    , , & Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

  4. 4.

    & Metal–insulator transition in disordered two-dimensional electron systems. Science 310, 289–291 (2005).

  5. 5.

    , , & Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979).

  6. 6.

    & Dilute electron gas near the metal–insulator transition: Role of valleys in silicon inversion layers. Phys. Rev. Lett. 88, 016802 (2002).

  7. 7.

    et al. Low-density spin susceptibility and effective mass of mobile electrons in Si inversion layers. Phys. Rev. Lett. 88, 196404 (2002).

  8. 8.

    et al. Interaction effects in conductivity of Si inversion layers at intermediate temperatures. Phys. Rev. Lett. 91, 126403 (2003).

  9. 9.

    , , , & Spin susceptibility of an ultra-low-density two-dimensional electron system. Phys. Rev. Lett. 90, 056805 (2003).

  10. 10.

    et al. Valley susceptibility of an interacting two-dimensional electron system. Phys. Rev. Lett. 97, 186404 (2006).

  11. 11.

    et al. Spin-polarization-induced tenfold magnetoresistivity of highly metallic two-dimensional holes in a narrow GaAs quantum well. Phys. Rev. B 73, 241315 (2006).

  12. 12.

    , , , & Thermodynamic spin magnetization of strongly correlated two-dimensional electrons in a silicon inversion layer. Phys. Rev. B 67, 205407 (2003).

  13. 13.

    et al. Magnetization of a strongly interacting two-dimensional electron system in perpendicular magnetic fields. Phys. Rev. Lett. 96, 046409 (2006).

  14. 14.

    et al. Pauli spin susceptibility of a strongly correlated two-dimensional electron liquid. Phys. Rev. Lett. 96, 036403 (2006).

  15. 15.

    & Self-doping instability of the Wigner–Mott insulator. Phys. Rev. B 77, 085104 (2008).

  16. 16.

    et al. Filling dependence of electronic properties on the verge of metal–Mott-insulator transition in Sr1−xLaxTiO3. Phys. Rev. Lett. 70, 2126–2129 (1993).

  17. 17.

    , , , & Evidence for a Mott–Hubbard transition in a two-dimensional 3He fluid monolayer. Phys. Rev. Lett. 90, 115301 (2003).

  18. 18.

    Normal 3He: An almost localized Fermi liquid. Rev. Mod. Phys. 56, 99–120 (1984).

  19. 19.

    Properties of the strongly correlated two-dimensional electron gas in Si MOSFET’s. Phys. Rev. B 64, 085317 (2001).

  20. 20.

    On effective electron mass of silicon field structures at low electron densities. JETP Lett. 76, 377–379 (2002).

  21. 21.

    , & Reentrant charge order transition in the extended Hubbard model. Phys. Rev. Lett. 82, 4046–4049 (1999).

  22. 22.

    & in The Helium Liquids (eds Armitage, J. G. M. & Farqhar, I. E.) (Academic, 1975).

  23. 23.

    Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base. Phys. Rev. B 75, 155113 (2007).

  24. 24.

    On the quantum melting of the two-dimensional Wigner crystal. Phys. Rev. B 73, 075417 (2006).

  25. 25.

    & Determination of Landau’s Fermi-liquid parameters in Si-MOSFET systems. Pis’ma v ZhETF 86, 687–690 (2007).

  26. 26.

    et al. Measurements of the density-dependent many-body electron mass in two dimensional GaAs/AlGaAs heterostructures. Phys. Rev. Lett. 94, 016405 (2005).

  27. 27.

    et al. Spin susceptibility of a two-dimensional electron system in GaAs towards the weak interaction region. Phys. Rev. B 73, 045334 (2006).

  28. 28.

    , , , & Spin susceptibility of two-dimensional electrons in narrow AlAs quantum wells. Phys. Rev. Lett. 92, 226401 (2004).

  29. 29.

    , & Magnetic-field dependence of the anomalous noise behavior in a two-dimensional electron system in silicon. Phys. Rev. Lett. 92, 226403 (2004).

  30. 30.

    , & Metal–insulator transition in a 2D electron gas: Equivalence of two approaches for determining the critical point. Phys. Rev. Lett. 87, 266402 (2001).

Download references

Acknowledgements

We thank M. Gershenson for fruitful discussion. A.C. and G.K. were supported by Grant NSF DMR-0806937. K.H. acknowledges support from Grant NFS DMR-0746395 and V.D. from Grant NFS DMR-0542026.

Author information

Affiliations

  1. Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

    • A. Camjayi
    • , K. Haule
    •  & G. Kotliar
  2. Departamento de Física, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz y Constituyentes, 1650 San Martín, Argentina

    • A. Camjayi
  3. Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA

    • V. Dobrosavljević

Authors

  1. Search for A. Camjayi in:

  2. Search for K. Haule in:

  3. Search for V. Dobrosavljević in:

  4. Search for G. Kotliar in:

Corresponding author

Correspondence to G. Kotliar.