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Strong correlations make high-temperature
superconductors robust against disorder
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Strong correlations are central to the problem of
high-temperature superconductivity in the cuprates1–4.
Correlations are responsible for both the Mott insulating,
antiferromagnetic state in the parent compounds and for
the d-wave superconducting state that arises on doping with
mobile charge carriers. An important experimental fact about
the superconducting state is its insensitivity to disorder5,
in marked contrast with conventional theories of d-wave
pairing, which predict just the opposite. Here, we generalize
the theory of the strongly correlated superconducting ground
state based on projected wavefunctions6–9 to include impurity
effects and find the remarkable result that correlations play
a central role in making the superconductor robust against
disorder. The nodal quasiparticles, which are the low-energy
electronic excitations, are protected against disorder leading to
characteristic signatures in scanning tunnelling spectroscopy10–14

and angle-resolved photoemission15–17.
Disorder is intrinsic to doped Mott insulators. Yet

superconductivity in the cuprates seems surprisingly robust
against impurities, much more so than what would be expected
on the basis of standard Abrikosov–Gorkov theory18,19, which
implies that disorder is a pair-breaking perturbation for d-wave
pairing symmetry. (Other unconventional superconductors such
as Sr2RuO4 with p-wave triplet pairing are indeed highly sensitive
to disorder20 as expected theoretically.) Recent scanning tunnelling
spectroscopy experiments10–14 on cuprates have led to atomic-scale
insights on the response to impurities, and found that even though
there are large inhomogeneous variations of the superconducting
gap on the nanoscale, nevertheless the local density of states
(LDOS) at low energies is remarkably homogeneous.

Here, we generalize the theory of superconductivity in doped
Mott insulators based on projected wavefunctions1,6–9 to include
the effect of random impurities. We find that correlations lead to
a pronounced renormalization of disorder effects. This results in a
much shorter healing length over which the pairing amplitude is
destroyed in the vicinity of an impurity and in greatly diminished
pair-breaking effects. There are several observable consequences.
First, the gapless nodal quasiparticles are found to be highly robust
against disorder, leading to a low-energy density of states (DOS)
that is quite insensitive to impurities in the presence of correlations;
see Fig. 1. Second, the point nodes in momentum space are
protected in contrast to the extended arc-like regions of gapless
excitations induced by disorder in the absence of correlations
(Fig. 2). In contrast, the antinodal excitations near the Brillouin

zone edge, which have a large gap, are much more affected by
disorder compared with the nodal quasiparticles, even in the
presence of correlations.

Our starting point is the disordered t–t ′–J model

H = −

∑
r,r′ ,σ

trr′ (c
†
rσ cr′σ +h.c.)

+ J
∑
〈r,r′〉

(Sr ·Sr′ −nrnr′ /4)+

∑
r

(V (r)−µ)nr. (1)

The hopping of electrons with spin σ from site r to r′ on a
two-dimensional square lattice is described by t the near-neighbour
and t ′ the next-near-neighbour hopping amplitudes. The
superexchange J = 4t2/U is responsible for d-wave pairing in the
doped system and µ fixes the average density n = 1− x with hole
doping x. H acts on a Hilbert space with no doubly occupied
sites, a constraint resulting from the onsite Coulomb U , the largest
energy scale in the problem. The random impurity potential V (r)
is V0 > 0 at a fraction nimp of the sites, and is zero elsewhere. We
focus on weak potentials V0 = t (Born scattering) as a simple model
of intrinsic disorder in cuprates.

To understand how strong correlations impact disorder effects,
we compare two sets of theoretical results. The first method
uses the Bogoliubov–de Gennes (BdG) equations to describe the
spatial inhomogeneity induced by disorder, but ignores the effects
of correlations beyond the simplest Hartree–Fock level. In fact
most of the theoretical work19,21–23 in the field, barring a few
exceptions24,25, uses just such an approach. The second calculation
includes the effects of both correlations and disorder. Correlations
are treated using the Gutzwiller approximation to implement
the no-double-occupancy constraint. This approximation has
been tested9,26 in great detail in translationally invariant systems
against Monte Carlo calculations7,8 that treat the constraint
exactly. Here, we generalize the Gutzwiller approximation to an
inhomogeneous environment, and then treat disorder using the
BdG methodology. The two approaches, which will be called
‘BdG’ and ‘BdG+ correlations’, are described in more detail in the
Methods section.

We begin with one of our central results on the evolution of the
spatially averagedDOS as a function of concentration of impurities,
shown in Fig. 1. We note that there are very significant differences
between the results with (Fig. 1a) and without correlations (Fig. 1b)
for the DOS. The most striking observation is that the V-shaped
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Figure 1 Spatially averaged DOS. a,b, Results with (a) and without (b) correlation
effects for the DOS N (ω ) for various n imp (listed in b). Note that in the correlated
system (a), the low-energy DOS is highly insensitive to n imp, whereas that in b,
where correlations are ignored, has strong disorder dependence even at very low
energies. c, The very low-energy DOS integrated over a small window |ω| ≤ 0.02t,
denoted by N (0), as a function of n imp. Results with correlations shown with open
symbols (red) and plain BdG with filled symbols (blue) The average electronic density
is n= 0.8, impurity potential is V0 = 1.0t and superexchange J is chosen as
described in the Methods section.

behaviour of the low-energy DOS N (ω) ≈ |ω|, characteristic of
a clean d-wave superconductor, survives with increasing impurity
concentration nimp from 1% to 25% in the correlated case (Fig. 1a),
but not in the uncorrelated case (Fig. 1b). In other words, the
low-energy excitations in the strongly correlated superconductor
are insensitive to disorder effects. This is also seen in Fig. 1c, where
we plot N (ω) integrated over a very small window |ω| ≤ 0.02t
as a function of nimp. We see here that very little low-energy
spectral weight is generated in the correlated system because the
pair-breaking effect of impurities is greatly reduced in the presence
of correlations, as compared with the simple BdG calculation.

In contrast to the low-energy DOS, we find that the DOS
near the gap edge is strongly affected by disorder in both
the correlated (Fig. 1a) and uncorrelated (Fig. 1b) systems. The
sharp log singularities (‘coherence peaks’) of the clean d-wave
superconductor are suppressed with increasing nimp in Fig. 1a,b,
although there are some differences. The energy scale of the peaks
in the DOS is shifted up slightly with increasing nimp in the
correlated case, whereas it seemsmore or less constant in the simple
BdG results.

We next explore the origin of the nodal–antinodal dichotomy
seen in the angle-resolved photoemisison spectroscopy (ARPES)
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Figure 2 Spectral function A (k,ω ). a,b, Low-energy A (k,ω ), with maximum
normalized to unity, for |ω| ≤ 0.02t for 200×200 system with n imp = 0.2. The
results with correlations (a) show only a slight extension around the nodes, whereas
the plain BdG results (b) show significant extension into ‘Fermi arcs’. c, A (k,ω ) as a
function of ω for n imp = 0.2 in the correlated system for two momenta: the node (in
red, labelled N) and the antinode (in blue, labelled AN). The input parameters are the
same as in Fig. 1.

spectral function. In a clean d-wave superconductor, the
low-energy excitations come from the vicinity of four point
nodes, on the Brillouin zone diagonal, whereas those at the gap
edge are dominated by the antinodes at the Brillouin zone edge.
We would like to understand whether we can still make such a
momentum space-based identification in the disordered systems of
Fig. 1. To address this question, we compute the spectral function
A(k, ω), where we Fourier transform the relative coordinate
variation and spatially average the centre-of-mass variation of the
Green’s function in a disordered system (see the Methods section
for details).

Figure 2a,b shows the low-energy A(k, ω); this shows the
k-states that contribute to the DOS in Fig. 1c. We see that the
four point nodes of a clean d-wave superconductor are extended
into small ‘arcs’ owing to disorder in the correlated system
(Fig. 2a), whereas the uncorrelated system shows much more
significant extension (Figure 2b). We should note that, within
our numerical resolution, the ‘arcs’ seen here are consistent with
highly anisotropic two-dimensional regions in k-space, with a small
width perpendicular to the underlying Fermi surface. A similar
effect has previously been found in a T-matrix calculation27 that
ignores correlations. The new feature of our results is the role of
correlations in suppressing the extension of the ‘arcs’.

We next compare the effect of disorder on the nodal and
antinodal quasiparticle peaks in A(k, ω). In a clean d-wave
superconductor, the nodal A(kN,ω) is a delta function at ω = 0,
whereas the antinodal A(kAN,ω) has two delta-function peaks of
equal weight situated at ω = ±∆0, the maximum of the d-wave
gap. Disorder leads to a broadening of these peaks, but as seen
from Fig. 2c the nodal peak is much sharper in energy as compared
with the antinodal one in the strongly correlated superconductor. A
simple golden rule estimate of the impurity scattering rate suggests
that the linewidths should scale like the DOS at the excitation
energy. As we have already seen that the impurity-induced DOS
in the correlated system is greatly suppressed relative to the
uncorrelated BdG result at low energies, it is self-consistent that
the gapless nodal states are much less affected by disorder than the
gapped antinodal ones.
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Figure 3 Local pairing amplitude ∆(r). a–d, The spatial variation of ∆(r) (with maximum normalized to unity) with (a,c) and without (b,d) correlations. The four dark spots
correspond to impurity sites with greatly suppressed pairing amplitude. Note that the healing length is much shorter in the correlated case. The results are for a given
disorder realization with V0 = 1.0t and n imp = 0.01, corresponding to four impurities in a 20×20 lattice, with an average electron density n= 0.8. J= 0.33t for the ‘BdG
plus correlations’ results (a,c), whereas J= 1.1t for the ‘BdG’ results ignoring correlations (b,d); these J values were chosen so that the pure system ∆0 is the same with
and without correlations.

We next look at the inhomogeneous local pairing amplitude in
the disordered superconductor to see how the presence of strong
correlations affects it. This is useful to gain a deeper understanding
of the above results, even though the pairing amplitude is not
directly observable in experiments. The local d-wave pairing
amplitude ∆(r) =

∑
r′ εr,r′∆r,r′ /4, where ∆r,r′ is the bond pairing

amplitude (defined in the Methods section) and εr,r′ = 1 for
r′

= r± x̂ and −1 for r′
= r± ŷ.

Figure 3 shows that ∆(r) is suppressed at the location of the
impurity in both the correlated and uncorrelated calculations, but
the manner in which the pairing amplitude heals is markedly
different in the two cases. In the correlated system (Figure 3a,c),
the response is highly localized in the vicinity of the impurities,
whereas in the uncorrelated system (Figure 3b,d), it is spread
out over a longer distance. We note that the superexchange J
in the correlated and uncorrelated calculations is chosen so as
to ensure the same ∆0 in the two cases in the absence of any
disorder (see caption of Fig. 3 for details). There are three distinct
mechanisms that seem to underly the reduction in healing length
in the correlated system. First, interactions screen the disorder
potential; second, correlations lead to a mass renormalization,
which is about a factor of two in the pure (non-disordered) case7,8.
However, the most interesting aspect of our results is that we find
that the spatially varying Gutzwiller factors are very important.
Physically, the electron density is suppressed near an impurity,

which reduces the constraints imposed by projection and enhances
the local hopping on the bonds around the impurity. The system is
consequently able to repair the damage induced by the disorder and
heal the pairing amplitude over a shorter length scale.

The insensitivity of the high-temperature (Tc) superconductors
to disorder has been understood up to this point as related to (1) the
fact that intrinsic disorder lies off the CuO2 planes in the spacer
layers, and (2) the short coherence length in the cuprates leads
to a very local and inhomogeneous response21,22,28 to impurities
in marked contrast to the standard Abrikosov–Gorkov theory.
Our results give a completely new insight into the central role of
strong correlations in leading to a shorter coherence length. They
further provide an understanding of several striking experimental
observations. Specifically, our results are in remarkable agreement
with scanning tunnelling microscopy (STM) measurements11 that
find that the very low-energy spectra do not vary from one region
of the sample to another, whereas the spectra near the gap edge
are very inhomogeneous. The nodal–antinodal dichotomy—with
antinodal excitations strongly affected and the nodal ones relatively
insensitive to disorder—captures the essential features of both
ARPES15–17 and STM10–14 experiments on cuprates.

The big question that remains to be answered is: what
is the underlying fundamental principle that protects the
low-energy excitations against disorder in a strongly correlated
superconductor? We suggest that this is related to the fact that
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spin-pairing underlies the strongly correlated superconductor
while the impurity potential couples to charge excitations. A deeper
understanding of the interplay between strong correlations and
disorder is one the most challenging issues in condensed-matter
physics today.

METHODS

We first describe the two T = 0 calculations, the results of which are reported
in the paper. (1) The BdG mean-field theory that includes the inhomogeneity
from the disorder, but treats interactions only at the simplest Hartree–Fock
level and (2) the Gutzwiller approximation coupled with the BdG method that
includes the effects of both strong correlations and of disorder. We then describe
the choice of Hamiltonian parameters and give details of the calculation of the
DOS and the spectral function.

The most commonly used approximation is to simply ignore the no-
double-occupancy constraint and solve the BdG mean-field equations for
an inhomogeneous superconductor21,22. The interaction in equation (1) is
decomposed into local bond-pairing amplitudes ∆rr′ = J〈cr↑cr′↓ − cr↓cr′↑〉/2
and Fock shifts Wrr′ = J〈c†

r′σ crσ〉/2 with the density n(r) = 〈
∑

σ c
†
rσ crσ〉. The

effective BdG Hamiltonian is then diagonalized and the fields defined above
calculated self-consistently. Note that in this approach, which we label ‘BdG’, we
ignore all correlation effects beyond the simple Hartree–Fock level (restricted to
non-magnetic solutions so that no moment formation is allowed).

We next include the non-perturbative effects of strong correlations, over
and above inhomogeneous BdG theory, as follows. The Hilbert space consists
of states |Φ〉 = P|Φ0〉 where the projection operator P =

∏
r(1− nr↑nr↓)

eliminates double occupancy in the state |Φ0〉. Here, we use the Gutzwiller
approximation3,6 to handle projection. In the translationally invariant, clean
system it has been shown that such an approximate treatment is in very good
semiquantitative agreement3,6,9,26 with Monte Carlo studies of variational
wavefunctions with P implemented exactly7,8.

We generalize the Gutzwiller approximation to inhomogeneous states29

by writing the expectation value of an operator Q in a state P|Φ0〉 as
the product of a Gutzwiller factor gQ times the expectation value in |Φ0〉

so that 〈Q〉 ' gQ〈Q〉0. The standard procedure6 for calculating gQ can
be generalized to keep track of the local density x(r) = 1− n(r). We
thus obtain the kinetic energy 〈c†

rσ cr′σ〉 ≈ gt (r,r′)〈c†
rσ cr′σ〉0 and the spin

correlation 〈Sr ·Sr′ 〉 ≈ gs(r,r′)〈Sr ·Sr′ 〉0, with the local Gutzwiller factors
given by gt (r,r′) = gt (r)gt (r′) with gt (r) = [2x(r)/(1+ x(r))]1/2 and
gs(r,r′) = 4/[(1+x(r))(1+x(r′))].

The BdG equations are then solved for eigenvalues En and
eigenvectors (un(r), vn(r)) together with local self-consistency
equations for the density n(r) = 2

∑
n |vn(r)|2, the pairing amplitude

∆r,r′ = J+(r,r′)
∑

n[un(r′)v?
n(r) + un(r)v?

n(r
′)] and the Fock shift

Wr,r′ = J−(r,r′)
∑

n vn(r
′)v?

n(r), where J±(r,r′) = J(3gs(r,r′)±1)/4.
Results that include correlation effects as described above are called

‘BdG+ correlations’. To meaningfully compare results with and without
correlations, we choose all parameters, except J , to be the same: t = 1,
t ′ = −0.25t , impurity potential V0 = t , and work at the same values of average
density n and impurity concentration nimp. (The scale of energy t = 1 actually
corresponds to t ' 300meV.) We choose the values of J = 1.1t for the BdG
calculation (without correlations) and J = 0.33t for the ‘BdG plus correlations’
case. These choices ensure that we get the same ∆ in the absence of disorder in
the two calculations (Fig. 3).

SPECTRAL FUNCTION AND DOS
In a disordered system, the one-particle spectral function
A(r,R;ω) = −ImG(r1,r2;ω + i0+)/π depends on both the centre-of-
mass R= (r1 +r2)/2 and the relative coordinate r= r1 −r2. STM experiments
measure the LDOS N (R,ω) = A(0,R;ω). Figure 1 shows the spatially
averaged DOS obtained by averaging the LDOS over the disordered system:
N (ω) = 〈N (R,ω)〉R. To generate a denser spectrum, we use a periodic
repetition scheme with an M2 array of L2 disordered cells so that the effective
size is N ×N with N =ML. Typical values used are L= 20 and M = 10. In
addition, we average over 10–15 disorder realizations.

ARPES experiments measure the occupied part of the spectral
function A(k,ω). For a disordered system, we must define this as

A(k,ω) =
∑

r exp(−ik · r)〈A(r,R;ω)〉R. Here, we spatially average over
the ‘centre-of-mass’ variable R because ARPES data is collected over a nearly
macroscopic-sized area of the sample. This is the quantity plotted in Fig. 2.

Within the Gutzwiller approximation, we obtain
A(r,R;ω) = gt (r1,r2)A0(r,R;ω) with A0

=
∑

n un(r1)u?
n(r2)δ(ω −

En)+ vn(r1)v?
n(r2)δ(ω+En). The Gutzwiller approximation describes the

coherent part of the spectral function30 that dominates A for ω values smaller
than or comparable to the gap. We focus exclusively on low-energy excitations
here. The higher-energy incoherent spectral weight, not accessible to the
Gutzwiller approximation, can be constrained by exact sum rules and leads to
p–h asymmetry30.
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