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Superconducting qubits1,2 behave as artificial two-level atoms
and are used to investigate fundamental quantum phenomena.
In this context, the study of multiphoton excitations3–7 occupies
an important role. Moreover, coupling superconducting qubits
to onchip microwave resonators has given rise to the field
of circuit quantum electrodynamics8–15 (QED). In contrast to
quantum-optical cavity QED (refs 16–19), circuit QED offers
the tunability inherent to solid-state circuits. Here, we report
on the observation of key signatures of a two-photon-driven
Jaynes–Cummings model, which unveils the upconversion
dynamics of a superconducting flux qubit20 coupled to an on-chip
resonator. Our experiment and theoretical analysis show clear
evidence for the coexistence of one- and two-photon-driven
level anticrossings of the qubit–resonator system. This
results from the controlled symmetry breaking of the system
hamiltonian, causing parity to become a not-well-defined
property21. Our study provides fundamental insight into
the interplay of multiphoton processes and symmetries in a
qubit–resonator system.

In cavity quantum electrodynamics (QED), a two-level atom
interacts with the quantized modes of an optical or microwave
cavity. The information on the coupled system is encoded both
in the atom and in the cavity states. The latter can be accessed
spectroscopically by measuring the transmission properties of
the cavity16, whereas the former can be read out by suitable
detectors18,19. In circuit QED, the solid-state counterpart of
cavity QED, the first category of experiments was implemented
by measuring the microwave radiation emitted by a resonator
(acting as a cavity) strongly coupled to a charge qubit8. In a
dual experiment, the state of a flux qubit was detected with
a d.c. superconducting quantum interference device (SQUID)
and vacuum Rabi oscillations were observed10. More recently,
both approaches have been exploited to extend the toolbox of
quantum optics on a chip11–15,22. Whereas all of these experiments

use one-photon driving of the coupled qubit–resonator system,
multiphoton studies are available only for sideband transitions15

or bare qubits3–7. The experiments discussed here explore, to our
knowledge for the first time, the physics of the two-photon-driven
Jaynes–Cummings dynamics in circuit QED. In this context, we
show that the dispersive interaction between the qubit and the
two-photon driving enables real level transitions. The nature of
our experiment can be understood as an upconversion mechanism,
which transforms the two-photon coherent driving into single
photons of the Jaynes–Cummings dynamics. This process requires
energy conservation and a not-well-defined parity21 of the
interaction hamiltonian owing to the symmetry breaking of
the qubit potential. Our experimental findings reveal that such
symmetry breaking can be obtained either in a controlled way by
choosing a suitable qubit operation point or by the presence of
spurious fluctuators23.

The main elements of our set-up, shown in Fig. 1a,b, are
a three-Josephson-junction flux qubit, a resonator made of an
inductor L and a capacitor C (LC resonator), a d.c. SQUID
and a microwave antenna24,25. The qubit is operated near
the optimal flux bias Φx = 1.5Φ0 and can be described
with the hamiltonian Ĥq = (εσ̂z + ∆σ̂x)/2, where σ̂x and σ̂z

are Pauli operators. From low-level microwave spectroscopy,
we estimate a qubit gap ∆/h = 3.89GHz. By changing Φx,
the quantity ε ≡ 2Ip(Φx − 1.5Φ0) and, in turn, the level splitting
h̄ωq ≡

√
ε2 +∆2 can be controlled. Here,±Ip are the clockwise and

anticlockwise circulating persistent currents associated with the
eigenstates |±〉 of εσ̂z . Far from the optimal point, |±〉 correspond
to the eigenstates |g〉 and |e〉 of Ĥq. The qubit is inductively
coupled to a lumped-element LC resonator10, which can be
represented by a quantum harmonic oscillator (see the Methods
section), Ĥ r = h̄ωr(â† â+1/2), with photon number states |0〉, |1〉,
|2〉, . . . and boson creation and annihilation operators â† and â
respectively. This resonator is designed such that its fundamental

686 nature physics VOL 4 SEPTEMBER 2008 www.nature.com/naturephysics

© 2008 Macmillan Publishers Limited.  All rights reserved. 

mailto:frank.deppe@wmi.badw-muenchen.de
http://www.nature.com/doifinder/10.1038/nphys1016


LETTERS

Adiabatic 
shift 
pulse

Microwave 
pulse

d.c.
SQUID 
readout 
pulse

M
ic

ro
w

av
e 

an
te

nn
a

QubitTime

d.c. SQUID measurement lines

|2〉

ωω =   q/2

ωω =   q/2

|g〉

|e〉

Resonator

|1〉

|0〉

ωωr = 2 

ωωr = 2 

θg sin   √2
~

θg sin
~

AnyΦx

Φ
Φ

x = 
1.5    0

Φ
Φ

x ≠ 
1.5    0

a b

c d

d.c. SQUID

Qubit

5 μm

2C C

Fi
lte

rin
g

50 mK
Cold att.

Fi
lte

rin
g

C

LL Qubit

Resonator

Figure 1 Experimental architecture and theoretical model. a, The flux qubit (red, junctions marked by crosses) is inductively coupled to the readout d.c. SQUID (black
rectangle), which is shunted by an LC circuit acting as a quantized resonator (blue)10. All elements within the shaded area are at a temperature T' 50mK. Microwave
signals and flux-shift pulses are applied via an onchip antenna (green). The signal-to-noise ratio is improved by cold attenuators. b, Scanning electron micrograph of flux
qubit and readout d.c. SQUID. c, Pulse scheme for qubit microwave spectroscopy with the adiabatic shift pulse method. First, the qubit is biased at a suitable readout point
(Φx 6= 1.5Φ0) using a superconducting coil and initialized in the ground state |g〉. Then, the qubit is shifted to the operation point with a rectangular adiabatic shift pulse
(green). There, it is irradiated with a 100 ns microwave pulse (green). Finally, the qubit state is detected by measuring Ip σ̂ z at the readout point applying a pulse to the
d.c. SQUID measurement lines. Averaging yields the probability Pe to find the qubit in the excited state |e〉. Our protocol enables qubit-state detection also at the optimal
point24 despite a vanishing mean value Ip〈σ̂ z〉. d, Upconversion dynamics describing the physics governing our experiments, see equation (1). The qubit (red) level splitting is
h̄ωq and the resonator (blue) frequency is ωr/2π. In the relevant case of two-photon driving with frequency ω/2π (green), the system predominantly decays via the
resonator. The qubit–resonator coupling strength is g sin θ̃ = g∆/ωr ' 0.63g. For Φx 6= 1.5Φ0, the mirror symmetry of the qubit potential (red double well; x axis: phase
variable ϕ̂m) is broken enabling two-photon transitions.

frequency, ωr/2π= 6.16GHz, is largely detuned from ∆/h. The
qubit–resonator interaction hamiltonian is Ĥq,r = h̄g σ̂z(â†

+ â),
where g = 2π×115MHz is the coupling strength. The LC circuit
also constitutes a crucial part of the electromagnetic environment
of the readout d.c. SQUID. In this way, the flux signal associated
with the qubit states |±〉 can be detected while maintaining
reasonable coherence times and measurement fidelity24,25.

To probe the properties of our system, we carry out qubit
microwave spectroscopy using an adiabatic shift pulse technique24,25

(Fig. 1c). The main results are shown in Fig. 2a,b. First, there
is a flux-independent feature at approximately 6GHz due to
the resonator. Second, we observe two hyperbolas with minima
near 4GHz ' ∆/h and 2GHz ' ∆/2h, one with a broad and
the other with a narrow linewidth. They correspond to the
one-photon (ω = ωq) and two-photon (2ω = ωq) resonance
condition between the qubit and the external microwave field.
In addition, the signatures of two-photon-driven blue-sideband
transitions are partially visible. One can be attributed to the
resonator, |g ,0〉 → |e,1〉, and the other to a spurious fluctuator23.
We assume that the latter is represented by the flux-independent

hamiltonian Ĥ f = (ε? σ̂?
z +∆? σ̂?

x)/2 and coupled to the qubit via
Ĥq,f = h̄g ? σ̂z σ̂

?
z , where σ̂?

x and σ̂?
z are Pauli operators. Exploiting

the different response of the system in the anticrossing region under
one- and two-photon driving, as explained in Fig. 2a, the centre
frequencies of the spectroscopic peaks can be accurately fitted to
the undriven hamiltonian Ĥu = Ĥq+Ĥ r+Ĥ f+Ĥq,r+Ĥq,f. Setting
ε?

= 0 (see the Methods section), we obtain g/2π = 115MHz,
〈N̂〉 ' 10, Ip = 367 nA, ωf/2π ≡

√

ε?2 +∆?2/h = 3.94GHz and
g ? sinθ?

= 37MHz, where sinθ?
≡∆?/h̄ωf.

Further insight into our experimental results can be
gained by numerical spectroscopy simulations based on
the driven hamiltonian Ĥd = Ĥu + Ĥm,q + Ĥm,r + Ĥm,f.
Here, Ĥm,q = (Ω/2)σ̂z cosωt , Ĥm,r = η(â†

+ â) cosωt and
Ĥm,f = (Ω ?/2)σ̂?

z cosωt represent the driving of the qubit,
resonator and fluctuator respectively. We approximate the steady
state with the time average of the probability Pe to find the qubit
in |e〉 (time-trace-averaging method). Inspecting Fig. 2c, we find
that for the driving strengths Ω/h = 244MHz, η/h = 655MHz
and Ω ?

= 0, our simulations match well all of the experimental
features discussed above. Using η and the relation 〈N̂〉 = (η/κ)2
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Figure 2 Qubit microwave spectroscopy: data and simulations. a, Centre
frequency of the measured absorption peaks (symbols) plotted versus the flux bias.
The lines are fits of the undriven hamiltonian Ĥu to the data. The presence of a large
(ω ≈ ωr) and small (2ω ≈ ωr) anticrossing constitutes direct evidence that
two-photon spectroscopy selectively drives the qubit (but not the resonator), thereby
probing the vacuum Rabi coupling g. On the contrary, the one-photon driving
populates the cavity resulting in an enhanced coupling g〈N̂〉

1/2. b, Measured
probability Pe to find the qubit in the excited state plotted versus flux bias and
driving frequency (black rectangle: area shown in Fig. 3a). c, Simulated probability
Pe obtained with the time-trace-averaging method for the driven hamiltonian Ĥd

(black rectangle: area shown in Fig. 4). Taking Pe as the average over a full 100 ns
time trace consisting of 10,000 time points gives excellent agreement with the
experimental data of b. No terms describing dissipation are included; the linewidth
of the peaks is caused by power broadening. Simulation parameters are derived
from the fit in a. The used inductance values are based on numerical estimates.

for the steady-state mean number of photons of a driven dissipative
cavity, we estimate a cavity decay rate κ ' 210MHz. This result
is of the same order as κ ' 400MHz estimated directly from the
experimental linewidth of the resonator peak. The large κ is due
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Figure 3 Qubit microwave spectroscopy close to the qubit–resonator
anticrossing under two-photon driving: data and simulations. a, Measured
probability Pe to find the qubit in |e〉 plotted versus flux bias and driving
frequency (black rectangle: area of simulations in c and e; solid lines: fit to Ĥu).
b, Maximum height of the spectroscopy peaks under one-photon and two-photon
driving plotted versus the flux bias (solid lines: guides to the eye). c, Simulated
probability Pe (time-trace-averaging method, no dissipation, parameters as in
Fig. 2c), revealing an anticrossing signature. d, Green curve: split-peak profile of Pe

along the vertical line in c. Blue curve: single-peak result obtained for the same flux
bias and g= 0. e, Simulated probability Pe using the Lindblad formalism22

neglecting the spurious fluctuator (dissipation: qubit relaxation rate γ1 = 3.3MHz,
qubit dephasing rate γϕ = 67MHz, resonator quality factor
Q≡ ωr/κ = 2π×6.16 GHz/400MHz' 100). When qubit and resonator become
degenerate, the spectroscopy signal fades away. f, Green curve: split-peak profile of
Pe along the vertical line in e. Blue line: single-peak result obtained for the same flux
bias and g= 0. Differently from the non-dissipative case (c and d), the split-peak
amplitudes are reduced by a factor of 10 compared with the single peak. This
demonstrates that the vanishing two-photon spectroscopy signal observed in the
experimental data (see a, b and e) is not caused by qubit decoherence.

to the galvanic connection of the resonator to the d.c. SQUID
measurement lines (Fig. 1a).

To elucidate the two-photon driving physics of the
qubit–resonator system, we consider the spectroscopy data near the
corresponding anticrossing shown in Fig. 3a. For 2ω=ωq =ωr, the
split peaks cannot be observed directly because the spectroscopy
signal is decreased below the noise floor δPe ' 1–2%. This
results from the fact that the resonator cannot absorb a
two-photon driving and its excitation energy is rapidly lost to
the environment (κ > g/2π). In contrast, for the one-photon case
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Figure 4 Two-photon spectroscopy simulations close to the optimal point using the time-trace-averaging method. a, Probability Pe to find the qubit in |e〉 plotted
versus driving frequency and flux bias (parameters as in Fig. 2c; in particular, the fluctuator parameters are ε?

= 0↔ sinθ?
= 1 and Ω ?

= 0). The spectroscopy signal
vanishes completely at the optimal point, Φx = 1.5Φ0, because of the specific selection rules associated with the symmetry properties of the hamiltonian21. b, Same as in a,
but for sinθ?

= 0.3 and Ω ?
= 280MHz. Here, the coexistence of the flux-independent first-order σ̂ ?

x and σ̂ ?
z terms of the fluctuator gives rise to a non-vanishing

second-order σ̂ ?
x term even at the qubit optimal point. The presence of the fluctuator breaks the symmetry of the total system at the optimal point and parity becomes not

well defined. Consequently, the spectroscopy signal is partially revived. In reality, an ensemble of fluctuators with some distribution of frequencies and coupling strengths
rather than a single fluctuator is expected to contribute to the symmetry breaking. Furthermore, when the experimental resolution is limited, a single peak will be detected
instead of the detailed structure of b. This is the case in our measurements (Fig. 2b).

(ω=ωq =ωr), there is a driving-induced steady-state population of
〈N̂〉 ' 10 photons in the cavity. Accordingly, the one-photon peak
height shows a reduction by a factor of approximately two, whereas
the two-photon peak almost vanishes, see Fig. 3b. To support
this interpretation, we compare the simulation results from the
time-trace-averaging method to those obtained with the standard
Lindblad dissipative-bath approach (Fig. 3c–f). In the latter case,
the role of qubit decoherence and resonator decay can be studied
explicitly solving a master equation22. The simulation results of
Fig. 3c–f prove that the two-photon peak indeed vanishes because
of the rapid resonator decay, but not because of qubit decoherence.
Altogether, our experimental data and numerical simulations
constitute clear evidence for the presence of a qubit–resonator
anticrossing under two-photon driving.

The second-order effective hamiltonian under two-photon
driving can be derived using a Dyson-series approach (see the
Methods section). Starting from the first-order-driven hamiltonian
Ĥd and neglecting the cavity driving and the fluctuator because of
large-detuning conditions, we obtain

Ĥ (2)
=

h̄ωq

2
σ̂z +

Ω 2

4∆
sin2 θcosθ

(
σ̂+e

−i2ωt
+ σ̂−e

+i2ωt
)

− h̄g sinθ
(
σ̂+ â+ σ̂− â

†
)
+ h̄ωr

(
â† â+

1

2

)
, (1)

where σ̂+ and σ̂− are the qubit raising and lowering operators
respectively, sinθ ≡ ∆/ωq and cosθ ≡ ε/ωq. The upconversion
dynamics shown in Fig. 1d is clearly described by equation (1). The
first two terms represent the qubit and its coherent two-photon
driving with angular frequency ω. The last two terms show the
population transfer via the Jaynes–Cummings interaction to the
resonator. The Jaynes–Cummings interaction in this form is valid
only near the anticrossings (θ ≈ θ̃, θ̃ ≡ (∆/ωr) ' 0.63; see the
Methods section). As discussed before, the resonator will then decay
emitting radiation of angular frequency 2ω.

The model outlined above enables us to unveil the
symmetry properties of our system. Even though the two-photon
coherent driving is largely detuned, ωq/2 = ω � (Ω/2) sinθ, a
not-well-defined symmetry of the qubit potential permits level

transitions away from the optimal point. Because of energy
conservation, that is, frequency matching, these transitions
are real and can be used to probe the qubit–resonator
anticrossing. The effective two-photon qubit driving strength,
(Ω 2 sin2 θ/4∆)cosθ, has the typical structure of a second-order
dispersive interaction with the extra factor cosθ. The latter causes
this coupling to disappear at the optimal point. There, the
qubit potential is symmetric and the parity of the interaction
operator is well defined. Consequently, selection rules similar
to those governing electric dipole transitions hold21. This is
best understood in our analytical two-level model, where the
first-order hamiltonian for the driven diagonalized qubit becomes
Ĥ (1)

OP = (∆/2)σ̂z + (Ω/4)σ̂x(e+iωt
+e−iωt ) at the optimal point. In

this case, one-photon transitions are allowed because the driving
couples to the qubit via the odd-parity operator σ̂x . In contrast,
the two-photon driving effectively couples via the second-order
hamiltonian Ĥ (2)

OP = (∆/2)σ̂z + (Ω 2/16∆)σ̂z(e+iωt
+e−iωt )2. As σ̂z

is an even-parity operator, real level transitions are forbidden (see
the Methods section). We note that the second σ̂z term of Ĥ (2)

OP

renormalizes the qubit transition frequency slightly and can be
neglected in equation (1), which describes the real level transitions
corresponding to our spectroscopy peaks. The intimate nature
of the symmetry breaking resides in the coexistence of σ̂x and
σ̂z operators in the first-order hamiltonian Ĥd, which produces
a non-vanishing σ̂x term in the second-order hamiltonian Ĥ (2)

of equation (1). This scenario can also be realized at the qubit
optimal point by the fluctuator terms σ̂?

x and σ̂?
z . As shown in

Fig. 4, their presence causes a revival of the two-photon signal and
the discussed strict selection rules no longer apply. Accordingly, we
observe only a reduction instead of a complete suppression of the
two-photon peaks near the qubit optimal point in the experimental
data of Fig. 2b.

In summary, we use two-photon qubit spectroscopy to study
the interaction of a superconducting flux qubit with an LC
resonator. We show experimental evidence for the presence of an
anticrossing under two-photon driving, enabling us to estimate
the vacuum Rabi coupling. Our experiments and theoretical
analysis shed new light on the fundamental symmetry properties
of quantum circuits and the nonlinear dynamics inherent to circuit
QED. This can be exploited in a wide range of applications such as
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parametric upconversion, generation of microwave single photons
on demand11,26,27 or squeezing28.

METHODS

TWO-PHOTON-DRIVEN JAYNES–CUMMINGS MODEL VIA DYSON SERIES
We now derive the effective second-order hamiltonian describing the physics
relevant for the analysis of the two-photon-driven system. We start from the
first-order hamiltonian in the basis |±〉,

Ĥ =
ε

2
σ̂z +

∆

2
σ̂x + h̄ωr

(
â† â+

1

2

)
+ h̄g σ̂z

(
â†

+ â
)
+

Ω

2
σ̂z cosωt .

Here, in comparison with Ĥd, the terms associated with the fluctuator
are not included (ε?

= ∆?
= Ω ?

= 0) because the important features are
contained in the driven qubit–resonator system. In addition, we focus on
the two-photon resonance condition ωr = ωq = 2ω. Thus, the driving
angular frequency ω is largely detuned from ωr and the corresponding
term in Ĥd can be neglected (η = 0). Next, we transform the qubit into
its energy eigenframe and move to the interaction picture with respect to
qubit and resonator, σ̂± → σ̂±e±iωq t , â → âe−iωr t and â†

→ â†e+iωr t . After
a rotating-wave approximation, we identify the expression Ŝ†e+iωt

+ Ŝe−iωt ,
where the superoperator Ŝ ≡ (Ω/4)(cosθ σ̂z − sinθ σ̂−) and its hermitian
conjugate Ŝ†

≡ (Ω/4)(cosθ σ̂z − sinθ σ̂+). In our experiments, the two-
photon driving of the qubit is weak, that is, the large-detuning condition
ωq −ω = ω � (Ω/2)sinθ is fulfilled. In such a situation, it can be shown that
the Dyson series for the evolution operator associated with the time-dependent
hamiltonian −h̄g sinθ(σ̂+ â+ σ̂− â†)+ (Ŝe−iωt

+ Ŝ†e+iωt ) can be rewritten in
an exponential form Û = e−iĤeff t/h̄ , where

Ĥeff = − h̄g sinθ
(
σ̂+ âe

+iδt
+ σ̂− â

†e−iδt
)
+

[
Ŝ†, Ŝ

]
h̄ω

= − h̄g sinθ
(
σ̂+ âe

+iδt
+ σ̂− â

†e−iδt
)

+
Ω 2

4∆

(
sin2 θcosθ σ̂x +

1

2
sin3 θ σ̂z

)
. (2)

Here, δ ≡ ωq − ωr is the qubit–resonator detuning. In equation (2), the
dispersive shift (Ω 2/8∆)sin3 θ σ̂z is a reminiscence of the full second-order σ̂z

component of the interaction hamiltonian, (Ω 2/16∆)sin3 θ σ̂z (e+iωt
+e−iωt )2.

The terms proportional to σ̂z exp±i2ωt are neglected implicitly by a rotating-wave
approximation when deriving the effective hamiltonian Ĥeff of equation (2).
In this equation, the σ̂z term renormalizes the qubit transition frequency,
and, in the vicinity of the anticrossing (|δ| ∼

< g sin θ̃, sin θ̃ = (∆/ωr) ' 0.63),
the hamiltonian Ĥ (2) of equation (1) can be considered equivalent to Ĥeff. In
this situation, the symmetries of the system are broken and our experiments
demonstrate the existence of real level transitions.

SELECTION RULES
The potential of the three-Josephson-junction flux qubit can be reduced
to a one-dimensional double well with respect to the phase variable ϕ̂m

(ref 20). At the optimal point (Φx = 1.5Φ0), this potential is a symmetric
function of ϕ̂m. For our experimental parameters, we can assume an effective
two-level system. The two lowest energy eigenstates |g〉 and |e〉 are, respectively,
symmetric and antisymmetric superpositions of |+〉 and |−〉. Thus, |g〉 has
even parity and |e〉 is odd. In this situation, the parity operator Π̂ can be
defined via the relations Π̂ |g〉 = +|g〉 and Π̂ |e〉 = −|e〉. The hamiltonian of
the classically driven qubit is (∆/2)σ̂z + (Ω/2)cosωt σ̂x . For a one-photon
driving, ω = ∆/h̄ (energy conservation), the hamiltonian in the interaction
picture is (Ω/4)σ̂x , where σ̂x ≡ |g〉〈e|+|e〉〈g|. This is an odd-parity operator
because the anticommutator {Π̂ , σ̂x} = 0 and, consequently, one-photon
transitions are allowed. For a two-photon driving, ω = ∆/2h̄ (energy
conservation), the effective interaction hamiltonian becomes (Ω 2/8∆)σ̂z ,
where σ̂z ≡|e〉〈e|−|g〉〈g|. As the commutator [Π̂ , σ̂z]=0, this is an even-parity
operator and two-photon transitions are forbidden29. These selection rules are
analogous to those governing electric dipole transitions in quantum optics. On
the contrary, in circuit QED the qubit can be biased away from some optimal
point. In this case, the symmetry is broken in a controlled way and the discussed
selection rules do not hold. Instead, we find the finite transition matrix elements
(Ω/4)sinθ and (Ω 2/4∆)sin2 θcosθ for the one- and two-photon process
respectively. Beyond the two-level approximation, the selection rules for a
flux qubit at the optimal point are best understood by the observation that

the double-well potential is symmetric there (Fig. 1d). Hence, the interaction
operator of the one-photon driving is odd with respect to the phase variable
ϕ̂m of the qubit potential20,21, whereas the one of the two-photon driving is
even. Away from the optimal point (Φx 6= 1.5Φ0), the qubit potential has no
well-defined symmetry and no selection rules apply.

SPURIOUS FLUCTUATORS
The presence of spurious fluctuators in qubits based on Josephson junctions
has already been reported previously23. In principle, such fluctuators can be
either resonators or two-level systems. As our experimental data does not
enable us to distinguish between these two cases, for simplicity, we assume a
two-level system in the simulations. In the numerical fit shown in Fig. 2a, we
choose ε?

= 0 owing to the limited experimental resolution. Consequently, the
coupling constant estimated from the undriven fit is not g ? , but g ? sinθ? . Away
from the qubit optimal point, especially near the qubit–resonator anticrossings,
the effect of the observed fluctuator can be neglected within the scope of this
study. Near the optimal point, its effect on the symmetry properties of the
system can be explained following similar arguments as given above for the flux
qubit. However, it is important to note that, differently from sinθ and cosθ, the
fluctuator parameters sinθ? and cosθ? are constants, that is, they do not depend
on the quasi-static flux bias Φx.

HARMONICITY OF THE LC RESONATOR
We now show that our LC resonator is harmonic and is not populated directly
by two-photon driving. Anharmonicities only arise for strong driving, when
the maximum induced current density Jmax in the LC resonator approaches
the critical current density of the aluminium lines30, Jc ' 107 A cm−2.
From qubit Rabi oscillation measurements (data not shown), we determine
the antenna current Ia ∼

< 1 µA resulting in a maximum resonator current
Imax =MarIa/Lr ' 25 nA. Here, Lr ' 200 pH is the resonator self-inductance
andMar ' 5 pH is the resonator–antenna mutual inductance. Assuming that the
supercurrent flows only within the London penetration depth lL = 50 nm, we
obtain Jmax ' 2.5×102 A cm−2 for our 100-nm-thick film. As Jmax/Jc < 10−4,
anharmonicities can be neglected safely. Indeed, in the spectroscopy data of
Fig. 2b, we observe a pronounced flux-independent one-photon excitation
signal of the resonator. On the contrary, two-photon excitation peaks
exclusively occur when the qubit is two-photon driven. In other words, the
data unambiguously shows that there is no direct two-photon excitation of
our resonator.
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