Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Universal emission intermittency in quantum dots, nanorods and nanowires

Abstract

Virtually all known fluorophores exhibit mysterious episodes of emission intermittency. A remarkable feature of the phenomenon is a power-law distribution of on- and off-times observed in colloidal semiconductor quantum dots, nanorods, nanowires and some organic dyes. For nanoparticles, the resulting power law extends over an extraordinarily wide dynamic range: nine orders of magnitude in probability density and five to six orders of magnitude in time. Exponents hover about the ubiquitous value of −3/2. Dark states routinely last for tens of seconds—practically forever on quantum mechanical timescales. Despite such infinite states of darkness, the dots miraculously recover and start emitting again. Although the underlying mechanism responsible for this phenomenon remains a mystery and many questions persist, we argue that substantial theoretical progress has been made.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time distributions for intermittency.
Figure 2: Schematic diagrams of blinking models.

Similar content being viewed by others

References

  1. Cook, R. J. & Kimble, H. J. Possibility of direct observation of quantum jumps. Phys. Rev. Lett. 54, 1023–1026 (1985).

    Article  ADS  Google Scholar 

  2. Moerner, W. E. & Orrit, M. Illuminating single molecules in condensed matter. Science 283, 1670–1676 (1999).

    Article  ADS  Google Scholar 

  3. Wustholz, K. L. et al. Dispersive kinetics from single molecules oriented in single crystals of potassium acid phthalate. J. Phys. Chem. C 111, 9146–9156 (2007).

    Article  Google Scholar 

  4. Yeow, E. K. L., Melnikov, S. M., Bell, T. D. M., De Schryver, F. C. & Hofkens, J. Characterizing the fluorescence intermittency of photobleaching kinetics of dye molecules immobilized on a glass surface. J. Phys. Chem. A 110, 1726–1734 (2006).

    Article  Google Scholar 

  5. Hoogenboom, J. P., van Dijk, E. M. H. P., Hernando, J., van Hulst, N. F. & Garcia-Parajo, M. F. Power-law-distributed dark states are the main pathway for photobleaching of single organic molecules. Phys. Rev. Lett. 95, 097401 (2005).

    Article  ADS  Google Scholar 

  6. Hoogenboom, J. P., Hernando, J., van Dijk, E. M. H. P., van Hulst, N. F. & Garcia-Parajo, M. F. Power-law blinking in the fluorescence of single organic molecules. ChemPhysChem 8, 823–833 (2007).

    Article  Google Scholar 

  7. Schuster, J., Cichos, F. & von Borczyskowski, C. Blinking of single molecules in various environments. Opt. Spectrosc. 98, 778–783 (2005).

    Article  Google Scholar 

  8. Haase, M. et al. Exponential and power-law kinetics in single-molecule fluorescence intermittency. J. Phys. Chem. B 108, 10445–10450 (2004).

    Article  Google Scholar 

  9. Dickson, R. M., Cubitt, A. B., Tsien, R. Y. & Moerner, W. E. On/off blinking and switching behavior of single green fluorescent protein molecules. Nature 388, 355–358 (1997).

    Article  ADS  Google Scholar 

  10. Vanden Bout, D. A. et al. Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules. Science 277, 1074–1077 (1997).

    Article  Google Scholar 

  11. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    Article  ADS  Google Scholar 

  12. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: A universal power law behavior. J. Chem. Phys. 112, 3117–3120 (2000).

    Article  ADS  Google Scholar 

  13. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. ‘On/off’ fluorescence intermittency of single semiconductor quantum dots. J. Chem. Phys. 115, 1028–1040 (2001).

    Article  ADS  Google Scholar 

  14. Shimizu, K. T. et al. Blinking statistics in single semiconductor nanocrystal quantum dots. Phys. Rev. B 63, 205316 (2001).

    Article  ADS  Google Scholar 

  15. Pelton, M., Grier, D. G. & Guyot-Sionnest, P. Characterizing quantum-dot blinking using noise power spectra. Appl. Phys. Lett. 85, 819–821 (2004).

    Article  ADS  Google Scholar 

  16. Pelton, M., Smith, G., Scherer, N. F. & Marcus, R. A. Evidence for a diffusion-controlled mechanism for fluorescence blinking of colloidal quantum dots. Proc. Natl Acad. Sci. 104, 14249–14254 (2007).

    Article  ADS  Google Scholar 

  17. Zhang, K., Chang, H., Fu, A., Alivisatos, A. P. & Yang, H. Continuous distribution of emission states from single CdSe/ZnS quantum dots. Nano Lett. 6, 843–847 (2006).

    Article  ADS  Google Scholar 

  18. Schlegel, G., Bohnenberger, J., Potapova, I. & Mews, A. Fluorescence decay time of single semiconductor nanocrystals. Phys. Rev. Lett. 88, 137401 (2002).

    Article  ADS  Google Scholar 

  19. Fisher, B. R., Eisler, H. J., Stott, N. E. & Bawendi, M.G. Emission intensity dependence and single exponential behavior in single colloidal quantum dot fluorescence lifetimes. J. Phys. Chem. B 108, 143–148 (2004).

    Article  Google Scholar 

  20. Chung, I. & Bawendi, M.G. Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots. Phys. Rev. B 70, 165304 (2004).

    Article  ADS  Google Scholar 

  21. Neuhauser, R. G., Shimizu, K. T., Woo, W. K., Empedocles, S. A. & Bawendi, M. G. Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots. Phys. Rev. Lett. 85, 3301–3304 (2000).

    Article  ADS  Google Scholar 

  22. Fomenko, V. & Nesbitt, D. J. Solution control of radiative and nonradiative lifetimes: A novel contribution to quantum dot blinking suppression. Nano Lett. 8, 287–293 (2008).

    Article  ADS  Google Scholar 

  23. Stefani, F. D., Zhong, X., Knoll, W., Han, M. & Kreiter, M. Memory in quantum-dot photoluminescence blinking. New J. Phys. 7, 197 (2005).

    Article  ADS  Google Scholar 

  24. Stefani, F. D., Zhong, X., Knoll, W., Kreiter, M. & Han, M. Quantification of photoinduced and spontaneous quantum-dot luminescence blinking. Phys. Rev. B 72, 125304 (2005).

    Article  ADS  Google Scholar 

  25. Hohng, S. & Ha, T. Near-complete suppression of quantum dot blinking in ambient conditions. J. Am. Chem. Soc. 126, 1324–1325 (2004).

    Article  Google Scholar 

  26. Hammer, N. I. et al. Coverage-mediated suppression of blinking in solid state quantum dot conjugated organic composite nanostructures. J. Phys. Chem. B 110, 14167–14171 (2006).

    Article  Google Scholar 

  27. Fu, Y., Zhang, J. & Lakowicz, J. R. Suppressed blinking in single quantum dots (QDs) immobilized near silver island films (SIFs). Chem. Phys. Lett. 447, 96–100 (2007).

    Article  ADS  Google Scholar 

  28. Park, S. J., Link, S., Miller, W. L., Gesquiere, A. & Barbara, P. F. Effect of electric field on the photoluminescence intensity of single CdSe nanocrystals. Chem. Phys. 341, 169–174 (2007).

    Article  Google Scholar 

  29. Wang, S., Querner, C., Emmons, T., Drndić, M. & Crouch, C. H. Fluorescence blinking statistics from CdSe core and core–shell nanorods. J. Phys. Chem. B 110, 23221–23227 (2006).

    Article  Google Scholar 

  30. Protasenko, V. V., Gordeyev, S. & Kuno, M. Spatial and intensity modulation of nanowire emission induced by mobile charges. J. Am. Chem. Soc. 129, 13160–13171 (2007).

    Article  Google Scholar 

  31. Protasenko, V. V., Hull, K. L. & Kuno, M. Disorder-induced optical heterogeneity in single CdSe nanowires. Adv. Mater. 17, 2942–2949 (2005).

    Article  Google Scholar 

  32. Glennon, J. J., Tang, R., Buhro, W. E. & Loomis, R. A. Synchronous photoluminescence intermittency (blinking) along whole semiconductor quantum wires. Nano Lett. 7, 3290–3295 (2007).

    Article  ADS  Google Scholar 

  33. Kadanoff, L. P. Static phenomena near critical points—theory and experiment. Rev. Mod. Phys. 39, 395–431 (1967).

    Article  ADS  Google Scholar 

  34. Cichos, F., von Borczyskowski, C. & Orrit, M. Power-law intermittency of single emitters. Curr. Opin. Colloid Interface Sci. 12, 272–284 (2007).

    Article  Google Scholar 

  35. Gomez, D. E., Califano, M. & Mulvaney, P. Optical properties of single semiconductor nanocrystals. Phys. Chem. Chem. Phys. 8, 4989–5011 (2006).

    Article  Google Scholar 

  36. Margolin, G., Protasenko, V., Kuno, M. & Barkai, E. Power law blinking quantum dots: Stochastic and physical models. Adv. Chem. Phys. 133, 327–356 (2006).

    Google Scholar 

  37. Tang, J. & Marcus, R. A. Single particle versus ensemble average: From power-law intermittency of a single quantum dot to stretched exponential fluorescence decay of an ensemble. J. Chem. Phys. 123, 054704 (2005).

    Article  ADS  Google Scholar 

  38. Sher, P. H. et al. Power law carrier dynamics in semiconductor nanocrystals at nanosecond timescales. Appl. Phys. Lett. 92, 101111 (2008).

    Article  ADS  Google Scholar 

  39. Margolin, G. & Barkai, E. Nonegrodicity of blinking nanocrystals and other Levy-walk processes. Phys. Rev. Lett. 94, 080601 (2005).

    Article  ADS  Google Scholar 

  40. Bianco, S., Grigolini, P. & Paradisi, P. Fluorescence intermittency in blinking quantum dots: Renewal or slow modulation? J. Chem. Phys. 123, 174704 (2005).

    Article  ADS  Google Scholar 

  41. Efros, A. L. & Rosen, M. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 78, 1110–1113 (1997).

    Article  ADS  Google Scholar 

  42. Verberk, R., van Oijen, A. M. & Orrit, M. Simple model for the power-law blinking of single semiconductor nanocrystals. Phys. Rev. B 66, 233202 (2002).

    Article  ADS  Google Scholar 

  43. Tang, J. & Marcus, R. A. Diffusion-controlled electron transfer processes and power-law statistics of fluorescence intermittency of nanoparticles. Phys. Rev. Lett. 95, 107401 (2005).

    Article  ADS  Google Scholar 

  44. Frantsuzov, P. A. & Marcus, R. A. Explanation of quantum dot blinking without the long-lived trap hypothesis. Phys. Rev. B. 72, 155321 (2005).

    Article  ADS  Google Scholar 

  45. Krauss, T. D. & Brus, L. E. Charge, polarizability, and photoionization of single semiconductor nanocrystals. Phys. Rev. Lett. 83, 4840–4843 (1999).

    Article  ADS  Google Scholar 

  46. Janko, B. & Ambegaokar, V. Parity fluctuations between Coulomb blockaded superconducting islands. Phys. Rev. Lett. 75, 1154–1157 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of NSF, ONR and DOE-BES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boldizsár Jankó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frantsuzov, P., Kuno, M., Jankó, B. et al. Universal emission intermittency in quantum dots, nanorods and nanowires. Nature Phys 4, 519–522 (2008). https://doi.org/10.1038/nphys1001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1001

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing