Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrating solids and gases for attosecond pulse generation

Abstract

Control of the field of few-cycle optical pulses has had an enormous impact on attosecond science. Subcycle pulses open the potential for non-adiabatic phase matching while concentrating the electric field so it can be used most efficiently. However, subcycle field transients have been difficult to generate. We exploit the perturbative response of a sub-100 µm thick monocrystalline quartz plate irradiated by an intense few-cycle 1.8 µm pulse, which creates a phase-controlled supercontinuum spectrum. Within the quartz, the pulse becomes space–time coupled as it generates a parallel second harmonic. Vacuum propagation naturally leads to a subcycle electric-field transient whose envelope is sculpted by the carrier envelope phase of the incident radiation. We show that a second medium (either gas or solid) can generate isolated attosecond pulses in the extreme ultraviolet region. With no optical elements between the components, the process is scalable to very high energy pulses and allows the use of diverse media.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pulse compression via propagation through quartz and vacuum.
Figure 2: Petahertz optical oscilloscope measurement of the electric field through the focus.
Figure 3: CEP-dependent XUV spectra from xenon.
Figure 4: XUV spectra from other media.
Figure 5: Measured spectral intensity and phase of XUV radiation generated in xenon and quartz.

Similar content being viewed by others

References

  1. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article  ADS  Google Scholar 

  2. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article  ADS  Google Scholar 

  3. Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Article  Google Scholar 

  4. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    Article  ADS  Google Scholar 

  5. Krausz, F . & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  6. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Article  Google Scholar 

  7. Vampa, G. et al. Linking high harmonics from gases and solids. Nature 522, 462–464 (2015).

    Article  ADS  Google Scholar 

  8. Krauss, G. et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nat. Photon. 4, 33–36 (2010).

    Article  ADS  Google Scholar 

  9. Huang, S. W. et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nat. Photon. 5, 475–479 (2011).

    Article  ADS  Google Scholar 

  10. Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).

    Article  ADS  Google Scholar 

  11. Cox, J. A., Putnam, W. P., Sell, A., Leitenstorfer, A. & Kaertner, F. X. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback. Opt. Lett. 37, 3579–3581 (2012).

    Article  ADS  Google Scholar 

  12. Chia, S.-H. et al. Two-octave-spanning dispersion-controlled precision optics for sub-optical-cycle waveform synthesizers. Optica 1, 315–322 (2014).

    Article  ADS  Google Scholar 

  13. Fattahi, H. Sub-cycle light transients for attosecond, X-ray, four-dimensional imaging. Contemp. Phys. 57, 580–595 (2016).

    Article  ADS  Google Scholar 

  14. Hassan, M. Th. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 530, 66–70 (2016).

    Article  ADS  Google Scholar 

  15. Lu, C.-H. et al. Generation of intense supercontinuum in condensed media. Optica 1, 400–406 (2014).

    Article  ADS  Google Scholar 

  16. He, P. et al. High-efficiency supercontinuum generation in solid thin plates at 0.1 TW level. Opt. Lett. 42, 474–477 (2017).

    Article  ADS  Google Scholar 

  17. Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961).

    Article  ADS  Google Scholar 

  18. Garg, M. et al. Multi-petahertz electronic metrology. Nature 538, 359–363 (2016).

    Article  ADS  Google Scholar 

  19. Husakou, A. V. & Hermann, J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 87, 203901 (2001).

    Article  ADS  Google Scholar 

  20. Gaeta, A. L. Catastrophic collapse of ultrashort pulses. Phys. Rev. Lett. 84, 3582–3585 (2000).

    Article  ADS  Google Scholar 

  21. Wagner, N. L. et al. Self-compression of ultrashort pulses through ionization-induced spatio-temporal reshaping. Phys. Rev. Lett. 93, 173902 (2004).

    Article  ADS  Google Scholar 

  22. Kim, K. T. et al. Petahertz optical oscilloscope. Nat. Photon. 7, 958–962 (2013).

    Article  ADS  Google Scholar 

  23. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  24. Mashiko, H. et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100, 103906 (2008).

    Article  ADS  Google Scholar 

  25. Fieß, M. et al. Attosecond control of tunneling ionization and electron trajectories. New J. Phys. 13, 033031 (2011).

    Article  ADS  Google Scholar 

  26. Hammond, T. J., Kim, K. T., Zhang, C., Villeneuve, D. M. & Corkum, P. B. Controlling attosecond angular streaking with second harmonic radiation. Opt. Lett. 40, 1768–1770 (2015).

    Article  ADS  Google Scholar 

  27. Zhao, K. et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett. 37, 3891–3893 (2012).

    Article  ADS  Google Scholar 

  28. Shiner, A. D. et al. Wavelength scaling of high harmonic generation efficiency. Phys. Rev. Lett. 103, 073902 (2009).

    Article  ADS  Google Scholar 

  29. Silva, F., Teichmann, S. M., Cousin, S. L., Hemmer, M. & Biegert, J. Spatiotemporal isolation of attosecond soft X-ray pulses in the water window. Nat. Comm. 6, 6611 (2015).

    Article  ADS  Google Scholar 

  30. Teichmann, S. M., Silva, F., Cousin, S. L., Hemmer, M. & Biegert, J. 0.5-keV soft X-ray attosecond continua. Nat. Comm. 7, 11493 (2016).

    Article  ADS  Google Scholar 

  31. Stuart, B. C., Feit, M. D., Rubenchik, A. M., Shore, B. W. & Perry, M. D. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248–2251 (1995).

    Article  ADS  Google Scholar 

  32. Carr, C. W., Radousky, H. B. & Demos, S. G. Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms. Phys. Rev. Lett. 91, 127402 (2003).

    Article  ADS  Google Scholar 

  33. Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    Article  ADS  Google Scholar 

  34. Palik, E. D., Ghosh, G. & Prucha, E. J. Handbook of Optical Constants in Solids (Academic, 1998).

    Google Scholar 

  35. Kim, K. T. et al. Manipulation of quantum paths for space–time characterization of attosecond pulses. Nat. Phys. 9, 159–163 (2013).

    Article  Google Scholar 

  36. Frumker, E., Paulus, G. G., Niikura, H., Villeneuve, D. M. & Corkum, P. B. Frequency-resolved high-harmonic wavefront characterization. Opt. Lett. 34, 3026–3028 (2009).

    Article  ADS  Google Scholar 

  37. Rothhardt, J. et al. Enhancing the macroscopic yield of narrow-band high-order harmonic generation by Fano resonances. Phys. Rev. Lett. 112, 233002 (2014).

    Article  ADS  Google Scholar 

  38. Bengtsson, S. et al. Space–time control of free induction decay in the extreme ultraviolet. Nat. Photon. 11, 252–258 (2017).

    Article  ADS  Google Scholar 

  39. Lewenstein, M., Balcou, P., Ivanov, M. Y., L'Huillier, A. & Corkum, P. B. Theory of high-harmonic generation from low frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  40. Dudovich, N. et al. Measuring and controlling the birth of attosecond XUV pulses. Nat. Phys. 2, 781–786 (2006).

    Article  Google Scholar 

  41. Zhang, C., Brown, G. G., Kim, K. T., Villeneuve, D. M. & Corkum, P. B. Full characterization of an attosecond pulse generated using an infrared driver. Sci. Rep. 6, 26771 (2016).

    Article  ADS  Google Scholar 

  42. Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003).

    Article  ADS  Google Scholar 

  43. Hammond, T. J., Brown, G. G., Kim, K. T., Villeneuve, D. M. & Corkum, P. B. Attosecond pulses measured from the attosecond lighthouse. Nat. Photon. 10, 171–175 (2016).

    Article  ADS  Google Scholar 

  44. Wu, M., Ghimire, S., Reis, D. A., Schafer, K. J. & Gaarde, M. B. High-harmonic generation from Bloch electrons in solids. Phys. Rev. A 91, 043839 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank K. Oudatchin for providing the X-ray diffraction data used to verify the X-cut crystal orientation. We also thank T. Brabec and C. Macdonald for useful discussions, and D. Crane and B. Avery for technical assistance. This material is based on work supported by the Air Force Office of Scientific Research (AFOSR) under award number FA9550-16-1-0109, the AFOSR Multidisciplinary University Research Initiative grant number FA9550-15-1-0037 and US Army Research Office grant W911NF-14-1-0383. The authors also acknowledge financial support from the National Research Council of Canada, the Natural Sciences and Engineering Research Council of Canada and the Canadian Foundation for Innovation and the Ontario Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

T.J.H. and S.M. conceived the initial idea. T.J.H., S.M. and C.Z. performed the experiment. T.J.H. and P.B.C. provided the model. T.J.H. provided the theory and analysed the experimental data. G.V. and D.K. provided the model for the quartz. T.J.H. and P.B.C. prepared the initial manuscript. All the authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to T. J. Hammond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1546 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammond, T., Monchocé, S., Zhang, C. et al. Integrating solids and gases for attosecond pulse generation. Nature Photon 11, 594–599 (2017). https://doi.org/10.1038/nphoton.2017.141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing