Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temporal solitons in microresonators driven by optical pulses

Abstract

Continuous-wave laser-driven, high-Q Kerr–nonlinear optical microresonators have enabled the generation of optical frequency combs, ultralow-noise microwaves and ultrashort optical pulses at tens of gigahertz repetition rate. Here, we break with the paradigm of the continuous-wave driving and instead use periodic, picosecond optical pulses. In a fibre-based Fabry–Pérot microresonator we observe the deterministic generation of stable femtosecond dissipative cavity solitons ‘on top’ of the resonantly enhanced driving pulses. The solitons lock to the driving pulse, which enables direct all-optical control of the soliton's repetition rate and tuning of its carrier-envelope offset frequency. When compared with continuous-wave-driven microresonators or non-resonant pulsed supercontinuum generation, this new approach is more efficient and can yield broadband frequency combs at an average driving power significantly below the continuous-wave parametric threshold. Bridging the fields of continuous-wave-driven resonant and pulse-driven non-resonant nonlinear optics, these results enable efficient microresonator frequency combs, resonant supercontinuum generation and microphotonic pulse compression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental scheme and set-up.
Figure 2: Experimental soliton generation.
Figure 3: Numerical simulation of soliton formation in a pulse-driven microresonator.
Figure 4: Comparison of c.w. versus pulsed driving and multi-solitons.
Figure 5: Soliton-to-pulse locking.

Similar content being viewed by others

References

  1. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  ADS  Google Scholar 

  2. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

    Article  ADS  Google Scholar 

  3. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  4. Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    Article  ADS  Google Scholar 

  5. Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  6. Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    Article  ADS  Google Scholar 

  7. Cole, D. C., Lamb, E. S., Del'Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Preprint at http://arXiv.org/abs/1610.00080 (2016).

  8. Wang, P.-H. et al. Intracavity characterization of micro-comb generation in the single-soliton regime. Opt. Express 24, 10890–10897 (2016).

    Article  ADS  Google Scholar 

  9. Grudinin, I. S. et al. High-contrast Kerr frequency combs. Optica 4, 434–437 (2017).

    Article  ADS  Google Scholar 

  10. Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article  ADS  Google Scholar 

  11. Dutt, A. et al. On-chip dual comb source for spectroscopy. Preprint at http://arXiv.org/abs/1611.07673 (2016).

  12. Pavlov, N. G. et al. Soliton dual frequency combs in crystalline microresonators. Opt. Lett. 42, 514–517 (2017).

    Article  ADS  Google Scholar 

  13. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  14. Jost, J. D. et al. Counting the cycles of light using a self-referenced optical microresonator. Optica 2, 706–711 (2015).

    Article  ADS  Google Scholar 

  15. Brasch, V., Lucas, E., Jost, J. D., Geiselmann, M. & Kippenberg, T. J. Self-referenced photonic chip soliton Kerr frequency comb. Light: Sci. Appl. 6, e16202 (2016).

    Article  Google Scholar 

  16. Yu, M., Okawachi, Y., Griffith, A. G., Lipson, M. & Gaeta, A. L. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica 3, 854–860 (2016).

    Article  ADS  Google Scholar 

  17. Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

    Article  ADS  Google Scholar 

  18. Xue, X., Wang, P. H., Xuan, Y., Qi, M. & Weiner, A. M. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photon. Rev. 11, 1600276 (2017).

    Article  ADS  Google Scholar 

  19. Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2016).

    Article  Google Scholar 

  20. Matsko, A. B., Savchenkov, A. A. & Maleki, L. On excitation of breather solitons in an optical microresonator. Opt. Lett. 37, 4856–4858 (2012).

    Article  ADS  Google Scholar 

  21. Leo, F., Gelens, L., Emplit, P., Haelterman, M. & Coen, S. Dynamics of one-dimensional Kerr cavity solitons. Opt. Express 21, 9180–9191 (2013).

    Article  ADS  Google Scholar 

  22. Luo, K., Jang, J. K., Coen, S., Murdoch, S. G. & Erkintalo, M. Spontaneous creation and annihilation of temporal cavity solitons in a coherently driven passive fiber resonator. Opt. Lett. 40, 3735–3738 (2015).

    Article  ADS  Google Scholar 

  23. Lucas, E., Karpov, M., Guo, H., Gorodetsky, M. & Kippenberg, T. Breathing dissipative solitons in optical microresonators. Preprint at http://arXiv.org/abs/1611.06567 (2016).

  24. Yu, M. et al. Breather soliton dynamics in microresonators. Nat. Commun. 8, 14569 (2017).

    Article  ADS  Google Scholar 

  25. Bao, C. et al. Weiner. Soliton repetition rate in a silicon-nitride microresonator. Opt. Lett. 42, 759–762 (2017).

    Article  ADS  Google Scholar 

  26. Karpov, M. et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett. 116, 103902 (2016).

    Article  ADS  Google Scholar 

  27. Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field. Opt. Lett. 40, 4755–4758 (2015).

    Article  ADS  Google Scholar 

  28. Jang, J. K., Erkintalo, M., Coen, S. & Murdoch, S. G. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nat. Commun. 6, 7370 (2015).

    Article  ADS  Google Scholar 

  29. Lobanov, V. E. et al. Harmonization of chaos into a soliton in Kerr frequency combs. Opt. Express 24, 27382–27394 (2016).

    Article  ADS  Google Scholar 

  30. Taheri, H., Eftekhar, A. A., Wiesenfeld, K. & Adibi, A. Soliton formation in whispering-gallery-mode resonators via input phase modulation. IEEE Photon. J. 7, 1–9 (2015).

    Article  Google Scholar 

  31. Papp, S. B., Del'Haye, P. & Diddams, S. A. Parametric seeding of a microresonator optical frequency comb. Opt. Express 21, 17615–17624 (2013).

    Article  ADS  Google Scholar 

  32. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phy. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  33. Malinowski, M., Rao, A., Delfyett, P. & Fathpour, S. Optical frequency comb generation by pulsed pumping. APL Photon. 2, 066101 (2017).

    Article  ADS  Google Scholar 

  34. Coen, S., Tlidi, M., Emplit, Ph. & Haelterman, M. Convection versus dispersion in optical bistability. Phys. Rev. Lett. 83, 2328–2331 (1999).

    Article  ADS  Google Scholar 

  35. Papp, S. B., Del'Haye, P. & Diddams, S. A. Mechanical control of a microrod-resonator optical frequency comb. Phys. Rev. X 3, 031003 (2013).

    Google Scholar 

  36. Xu, Y. & Coen, S. Experimental observation of the spontaneous breaking of the time-reversal symmetry in a synchronously pumped passive Kerr resonator. Opt. Lett. 39, 3492–3495 (2014).

    Article  ADS  Google Scholar 

  37. Anderson, M., Leo, F., Coen, S., Erkintalo, M. & Murdoch, S. G. Observations of spatiotemporal instabilities of temporal cavity solitons. Optica 3, 1071–1074 (2016).

    Article  ADS  Google Scholar 

  38. Suzuki, K., Haus, H. A. & Nakazawa, M. Parametric soliton laser. Opt. Lett. 14, 320–322 (1989).

    Article  ADS  Google Scholar 

  39. Serkland, D. K., Bartolini, G. D., Agarwal, A., Kumar, P. & Kath, W. L. Pulsed degenerate optical parametric oscillator based on a nonlinear-fiber Sagnac interferometer. Opt. Lett. 23, 795–797 (1998).

    Article  ADS  Google Scholar 

  40. Jones, R. & Ye, J. Femtosecond pulse amplification by coherent addition in a passive optical cavity. Opt. Lett. 27, 1848–1850 (2002).

    Article  ADS  Google Scholar 

  41. Braje, D., Hollberg, L. & Diddams, S. Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser. Phys. Rev. Lett. 102, 193902 (2009).

    Article  ADS  Google Scholar 

  42. Kobayashi, T. et al. Optical pulse compression using high-frequency electrooptic phase modulation. IEEE J. Quantum Electron. 24, 382–387 (1988).

    Article  ADS  Google Scholar 

  43. Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    Article  ADS  Google Scholar 

  44. Herr, T. et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113, 123901 (2014).

    Article  ADS  Google Scholar 

  45. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    Article  ADS  Google Scholar 

  46. Kafka, J. D., Watts, M. L. & Pieterse, J. W. Synchronously pumped optical parametric oscillators with LiB3O5 . J. Opt. Soc. Am. B 12, 2147–2157 (1995).

    Article  ADS  Google Scholar 

  47. Fuerst, C., Leitenstorfer, A. & Laubereau, A. Mechanism for self-synchronization of femtosecond pulses in a two-color Ti:sapphire laser. IEEE J. Sel. Top. Quantum Electron. 2, 473–479 (1996).

    Article  ADS  Google Scholar 

  48. Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Stokes solitons in optical microcavities. Nat. Phys. 13, 53–57 (2017).

    Article  Google Scholar 

  49. Beha, K. et al. Self-referencing a continuous-wave laser with electro-optic modulation. Preprint at http://arXiv.org/abs/1507.06344 (2015).

  50. Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Counter-propagating solitons in microresonators. Nat. Photon. http://dx.doi.org/10.1038/nphoton.2017.117 (2017).

Download references

Acknowledgements

The authors thank T. Kippenberg, V. Brasch, E. Lucas, S. Diddams and S. Papp for discussions. This work was funded by the Swiss National Science Foundation (SNF) grant 200021_166108 and the Canton of Neuchâtel.

Author information

Authors and Affiliations

Authors

Contributions

E.O., S.L. and T.H. set up the pulsed laser. S.L. and T.H. designed the microresonator. E.O. and T.H. performed the experiments and simulations. T.H. conceived and supervised the work. All authors participated in writing the Article.

Corresponding author

Correspondence to Tobias Herr.

Ethics declarations

Competing interests

CSEM has filed patent applications on both the fibre-based resonator and the pulsed driving of a resonator.

Supplementary information

Supplementary information

Supplementary information (PDF 859 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nature Photon 11, 600–607 (2017). https://doi.org/10.1038/nphoton.2017.140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing