Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits

Abstract

Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1,550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radiofrequency field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic-crystal waveguides, or optically through the strong photoelastic effect. Together with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which radiofrequency-driven coherent mechanical motion is cancelled by optically driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical and mechanical domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Piezo-optomechanical circuits.
Figure 2: Coupling between propagating and localized phononic modes.
Figure 3: Acousto-optic modulation and coherent phonon detection.
Figure 4: Acoustic wave interference.

Similar content being viewed by others

References

  1. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

    Article  ADS  Google Scholar 

  2. Metcalfe, M. Applications of cavity optomechanics. Appl. Phys. Rev. 1, 031105 (2014).

    Article  ADS  Google Scholar 

  3. Favero, I. & Karrai, K. Optomechanics of deformable optical cavities. Nature Photon. 3, 201–205 (2009).

    Article  ADS  Google Scholar 

  4. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  ADS  Google Scholar 

  5. Pant, R. et al. On-chip stimulated Brillouin scattering. Opt. Express 19, 8285–8290 (2011).

    Article  ADS  Google Scholar 

  6. Shin, H. et al. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nature Commun. 4, 1944 (2013).

    Article  ADS  Google Scholar 

  7. Van Laer, R., Kuyken, B., Van Thourhout, D. & Baets, R. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nature Photon. 9, 199–203 (2015).

    Article  ADS  Google Scholar 

  8. Matsko, A., Savchenkov, A., Ilchenko, V., Seidel, D. & Maleki, L. Optomechanics with surface-acoustic-wave whispering-gallery modes. Phys. Rev. Lett. 103, 257403 (2009).

    Article  ADS  Google Scholar 

  9. Bahl, G., Zehnpfennig, J., Tomes, M. & Carmon, T. Stimulated optomechanical excitation of surface acoustic waves in a microdevice. Nature Commun. 2, 403 (2011).

    Article  ADS  Google Scholar 

  10. Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nature Commun. 4, 2097 (2013).

    Article  ADS  Google Scholar 

  11. Wilson, D. J. et al. Measurement-based control of a mechanical oscillator at its thermal decoherence rate. 524, 325–329 (2015).

  12. Andrews, R. et al. Bidirectional and efficient conversion between microwave and optical light. Nature Phys. 10, 321–326 (2014).

    Article  ADS  Google Scholar 

  13. Winger, M. et al. A chip-scale integrated cavity-electro-optomechanics platform. Opt. Express 19, 24905–24921 (2011).

    Article  ADS  Google Scholar 

  14. Miao, H., Srinivasan, K. & Aksyuk, V. A microelectromechanically controlled cavity optomechanical sensing system. New J. Phys. 14, 075015 (2012).

    Article  ADS  Google Scholar 

  15. Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nature Phys. 9, 712–716 (2013).

    Article  ADS  Google Scholar 

  16. Fong, K. Y., Fan, L., Jiang, L., Han, X. & Tang, H. X. Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems. Phys. Rev. A 90, 051801 (2014).

    Article  ADS  Google Scholar 

  17. Baker, C. et al. Photoelastic coupling in gallium arsenide optomechanical disk resonators. Opt. Express 22, 14072–14086 (2014).

    Article  ADS  Google Scholar 

  18. Balram, K. C., Davanço, M., Lim, J. Y., Song, J. D. & Srinivasan, K. Moving boundary and photoelastic coupling in gaas optomechanical resonators. Optica 1, 414–420 (2014).

    Article  ADS  Google Scholar 

  19. de Lima, M. M. Jr & Santos, P. V. Modulation of photonic structures by surface acoustic waves. Rep. Prog. Phys. 68, 1639–1701 (2005).

    Article  ADS  Google Scholar 

  20. Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    Article  ADS  Google Scholar 

  21. Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012).

    Article  ADS  Google Scholar 

  22. Campbell, C. K. Applications of surface acoustic and shallow bulk acoustic wave devices. Proc. IEEE 77, 1453–1484 (1989).

    Article  ADS  Google Scholar 

  23. Campbell, C. Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic, 1998).

    Google Scholar 

  24. Safavi-Naeini, A. H. & Painter, O. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic–photonic crystal slab. Opt. Express 18, 14926–14943 (2010).

    Article  ADS  Google Scholar 

  25. Tadesse, S. A. & Li, M. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies. Nature Commun. 5, 5402 (2014).

    Article  ADS  Google Scholar 

  26. Li, H., Tadesse, S. A., Liu, Q. & Li, M. Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz. Optica 2, 826–831 (2015).

    Article  ADS  Google Scholar 

  27. Agarwal, G. & Huang, S. Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010).

    Article  ADS  Google Scholar 

  28. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

    Article  ADS  Google Scholar 

  29. Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. 472, 69–73 (2011).

  30. Arimondo, E. Coherent Populating Trapping in Laser Spectroscopy 257–354 (Elsevier Science, 1996).

    Google Scholar 

  31. Khan, S., Kumar, M., Chanu, S. R., Bharti, V. & Natarajan, V. Coherent population trapping (CPT) versus electromagnetically induced transparency (EIT). Preprint at http://arXiv.org/abs/1503.06956 (2015).

  32. Wang, Y.-D. & Clerk, A. A. Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012).

    Article  ADS  Google Scholar 

  33. Dong, C., Fiore, V., Kuzyk, M. C. & Wang, H. Optomechanical dark mode. Science 338, 1609–1613 (2012).

    Article  ADS  Google Scholar 

  34. Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Coherent optical wavelength conversion via cavity optomechanics. Nature Commun. 3, 1196 (2012).

    Article  ADS  Google Scholar 

  35. Liu, Y., Davanço, M., Aksyuk, V. & Srinivasan, K. Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators. Phys. Rev. Lett. 110, 223603 (2013).

    Article  ADS  Google Scholar 

  36. Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon–photon translator. New J. Phys. 13, 013017 (2011).

    Article  ADS  Google Scholar 

  37. Habraken, S., Stannigel, K., Lukin, M. D., Zoller, P. & Rabl, P. Continuous mode cooling and phonon routers for phononic quantum networks. New J. Phys. 14, 115004 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  38. De Lima, M. Jr, Alsina, F., Seidel, W. & Santos, P. Focusing of surface-acoustic-wave fields on (100) GaAs surfaces. J. Appl. Phys. 94, 7848–7855 (2003).

    Article  ADS  Google Scholar 

  39. Khelif, A., Choujaa, A., Benchabane, S., Djafari-Rouhani, B. & Laude, V. Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Appl. Phys. Lett. 84, 4400–4402 (2004).

    Article  ADS  Google Scholar 

  40. Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).

    Article  ADS  Google Scholar 

  41. Olsson Iii, R. & El-Kady, I. Microfabricated phononic crystal devices and applications. Meas. Sci. Technol. 20, 012002 (2009).

    Article  ADS  Google Scholar 

  42. Hatanaka, D., Mahboob, I., Onomitsu, K. & Yamaguchi, H. Phonon waveguides for electromechanical circuits. Nature Nanotech. 9, 520–524 (2014).

    Article  ADS  Google Scholar 

  43. Mohammadi, S. & Adibi, A. On chip complex signal processing devices using coupled phononic crystal slab resonators and waveguides. AIP Adv. 1, 041903 (2011).

    Article  ADS  Google Scholar 

  44. Metcalfe, M., Carr, S. M., Muller, A., Solomon, G. S. & Lawall, J. Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves. Phys. Rev. Lett. 105, 037401 (2010).

    Article  ADS  Google Scholar 

  45. Fuhrmann, D. A. et al. Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons. Nature Photon. 5, 605–609 (2011).

    Article  ADS  Google Scholar 

  46. Yeo, I. et al. Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system. Nature Nanotech. 9, 106–110 (2014).

    Article  ADS  Google Scholar 

  47. Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

K.C.B. acknowledges support under the Cooperative Research Agreement between the University of Maryland and NIST-CNST (award no. 70NANB10H193). J.D.S. acknowledges support from the KIST flagship institutional programme. The authors thank D. Rutter and A. Band for help with microwave electronics. This work was partially supported by the DARPA MESO programme.

Author information

Authors and Affiliations

Authors

Contributions

K.C.B. led the design, fabrication and measurement of the devices, with assistance from M.D. and K.S. J.D.S. grew the epitaxial material and K.C.B. and K.S. analysed the data and wrote the manuscript, with input from all authors. K.S. supervised the project.

Corresponding authors

Correspondence to Krishna C. Balram or Kartik Srinivasan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1487 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balram, K., Davanço, M., Song, J. et al. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nature Photon 10, 346–352 (2016). https://doi.org/10.1038/nphoton.2016.46

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.46

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing