Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Broadband dispersion-engineered microresonator on a chip

Abstract

The control of dispersion in fibre optical waveguides is of critical importance to optical fibre communications systems1,2 and more recently for continuum generation from the ultraviolet to the mid-infrared3,4,5. The wavelength at which the group velocity dispersion crosses zero can be set by varying the fibre core diameter or index step2,6,7,8. Moreover, sophisticated methods to manipulate higher-order dispersion so as to shape and even flatten the dispersion over wide bandwidths are possible using multi-cladding fibres9,10,11. Here we introduce design and fabrication techniques that allow analogous dispersion control in chip-integrated optical microresonators, and thereby demonstrate higher-order, wide-bandwidth dispersion control over an octave of spectrum. Importantly, the fabrication method we employ for dispersion control simultaneously permits optical Q factors above 100 million, which is critical for the efficient operation of nonlinear optical oscillators. Dispersion control in high-Q systems has become of great importance in recent years with increased interest in chip-integrable optical frequency combs12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fibre-inspired cavity dispersion design.
Figure 2: Microfabrication process flow and side-view micrographs.
Figure 3: Dispersion characterization.

Similar content being viewed by others

References

  1. Agrawal, G. P. Nonlinear Fiber Optics (Academic, 2007).

    MATH  Google Scholar 

  2. Ainslie, B. J. & Day, C. R. A review of single-mode fibers with modified dispersion characteristics. J. Lightwave Technol. 4, 967–979 (1986).

    Article  ADS  Google Scholar 

  3. Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000).

    Article  ADS  Google Scholar 

  4. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  5. Petersen, C. R. et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photon. 8, 830–834 (2014).

    Article  ADS  Google Scholar 

  6. Cohen, L., Lin, C. & French, W. Tailoring zero chromatic dispersion into the 1.5–1.6 μm low-loss spectral region of single-mode fibres. Electron. Lett. 15, 334–335 (1979).

    Article  Google Scholar 

  7. White, K. & Nelson, B. Zero total dispersion in step-index monomode fibres at 1.30 and 1.55 μm. Electron. Lett. 15, 396–397 (1979).

    Article  Google Scholar 

  8. Tsuchiya, H. & Imoto, N. Dispersion-free single-mode fibre in 1.5 μm wavelength region. Electron. Lett. 15, 476–478 (1979).

    Article  Google Scholar 

  9. Kawakami, S. & Nishida, S. Characteristics of a doubly clad optical fiber with a low-index inner cladding. IEEE J. Quant. Electron. 10, 879–887 (1974).

    Article  ADS  Google Scholar 

  10. Cohen, L., Mammel, W. & Jang, S. Low-loss quadruple-clad single-mode lightguides with dispersion below 2 ps/km-nm over the 1.281.65 μm wavelength range. Electron. Lett. 18, 1023–1024 (1982).

    Article  ADS  Google Scholar 

  11. Etzkorn, H. & Heinlein, W. Low-dispersion single-mode silica fibre with undoped core and three F-doped claddings. Electron. Lett. 20, 423–424 (1984).

    Article  Google Scholar 

  12. Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  13. Del'Haye, P., Arcizet, O., Gorodetsky, M., Holzwarth, R. & Kippenberg, T. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nature Photon. 3, 529–533 (2009).

    Article  ADS  Google Scholar 

  14. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  ADS  Google Scholar 

  15. Del'Haye, P. et al. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett. 107, 063901 (2011).

    Article  ADS  Google Scholar 

  16. Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    Article  ADS  Google Scholar 

  17. Herr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photon. 6, 480–487 (2012).

    Article  ADS  Google Scholar 

  18. Lamont, M. R., Okawachi, Y. & Gaeta, A. L. Route to stabilized ultrabroadband microresonator-based frequency combs. Opt. Lett. 38, 3478–3481 (2013).

    Article  ADS  Google Scholar 

  19. Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo, M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field lugiato–lefever model. Opt. Lett. 38, 37–39 (2013).

    Article  ADS  Google Scholar 

  20. Chembo, Y. K. & Menyuk, C. R. Spatiotemporal Lugiato–Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87, 053852 (2013).

    Article  ADS  Google Scholar 

  21. Li, J., Lee, H., Chen, T. & Vahala, K. J. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett. 109, 233901 (2012).

    Article  ADS  Google Scholar 

  22. Del'Haye, P., Beha, K., Papp, S. B. & Diddams, S. A. Self-injection locking and phase-locked states in microresonator-based optical frequency combs. Phys. Rev. Lett. 112, 043905 (2014).

    Article  ADS  Google Scholar 

  23. Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).

    Article  ADS  Google Scholar 

  24. Del'Haye, P. et al. Phase steps and resonator detuning measurements in microresonator frequency combs. Nature Commun. 6, 5668 (2015).

    Article  ADS  Google Scholar 

  25. Herr, T. et al. Temporal solitons in optical microresonators. Nature Photon. 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  26. Herr, T. et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113, 123901 (2014).

    Article  ADS  Google Scholar 

  27. Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  28. Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photon. 9, 594–600 (2015).

    Article  ADS  Google Scholar 

  29. Jost, J. D. et al. Counting the cycles of light using a self-referenced optical microresonator. Optica 2, 706–711 (2015).

    Article  ADS  Google Scholar 

  30. Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    Article  ADS  Google Scholar 

  31. Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nature Commun. 6, 7957 (2015).

    Article  ADS  Google Scholar 

  32. Grudinin, I. S. & Yu, N. Dispersion engineering of crystalline resonators via microstructuring. Optica 2, 221–224 (2015).

    Article  ADS  Google Scholar 

  33. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  34. Peccianti, M. et al. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nature Commun. 3, 765 (2012).

    Article  ADS  Google Scholar 

  35. Spillane, S., Kippenberg, T. & Vahala, K. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).

    Article  ADS  Google Scholar 

  36. Rong, H. et al. An all-silicon Raman laser. Nature 433, 292–294 (2005).

    Article  ADS  Google Scholar 

  37. Lee, H. et al. Chemically etched ultrahigh-Q resonator on a chip. Nature Photon. 6, 369–373 (2012).

    Article  ADS  Google Scholar 

  38. Büttner, T. F. et al. Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing. Sci. Rep. 4, 5032 (2014).

    Article  Google Scholar 

  39. Carmon, T. & Vahala, K. J. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nature Phys. 3, 430–435 (2007).

    Article  ADS  Google Scholar 

  40. Kippenberg, T., Spillane, S. & Vahala, K. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    Article  ADS  Google Scholar 

  41. Grudinin, I. S., Yu, N. & Maleki, L. Generation of optical frequency combs with a CaF2 resonator. Opt. Lett. 34, 878–880 (2009).

    Article  ADS  Google Scholar 

  42. Saha, K. et al. Broadband parametric frequency comb generation with a 1-μm pump source. Opt. Express 20, 26935–26941 (2012).

    Article  ADS  Google Scholar 

  43. Hausmann, B., Bulu, I., Venkataraman, V., Deotare, P. & Lončar, M. Diamond nonlinear photonics. Nature Photon. 8, 369–374 (2014).

    Article  ADS  Google Scholar 

  44. Riemensberger, J. et al. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Opt. Express 20, 27661–27669 (2012).

    Article  ADS  Google Scholar 

  45. Jiang, W. C., Zhang, J., Usechak, N. G. & Lin, Q. Dispersion engineering of high-Q silicon microresonators via thermal oxidation. Appl. Phys. Lett. 105, 031112 (2014).

    Article  ADS  Google Scholar 

  46. Li, J., Lee, H., Yang, K. Y. & Vahala, K. J. Sideband spectroscopy and dispersion measurement in microcavities. Opt. Express 20, 26337–26344 (2012).

    Article  ADS  Google Scholar 

  47. Malitson, I. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205–1208 (1965).

    Article  ADS  Google Scholar 

  48. Beha, K. et al. Self-referencing a continuous-wave laser with electro-optic modulation. Preprint at http://arxiv.org/abs/1507.06344 (2015).

Download references

Acknowledgements

We gratefully acknowledge support from the Defense Advanced Research Projects Agency under the QuASAR program, the National Institute of Standards and Technology, the Kavli Nanoscience Institute and the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation. D.C.C. acknowledges support from the NSF GRFP under Grant No. DGE 1144083.

Author information

Authors and Affiliations

Authors

Contributions

K.Y.Y. and K.J.V. conceived the experiments. K.Y.Y. and D.Y.O. performed the numerical simulations. K.Y.Y. developed the fabrication method with assistance from H.L. K.Y.Y., K.B., D.C.C., P.D., S.A.D., S.B.P. and K.J.V. designed and built the EOM comb-assisted dispersion measurement set-up. K.Y.Y., K.B., D.C.C., X.Y., P.D. and J.L. performed the dispersion measurement, and K.Y.Y., K.B., D.C.C., X.Y., P.D., J.L., S.A.D., S.B.P. and K.J.V. analysed the data. K.Y.Y. and K.J.V. prepared the manuscript with input from all co-authors.

Corresponding author

Correspondence to Kerry J. Vahala.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1906 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Beha, K., Cole, D. et al. Broadband dispersion-engineered microresonator on a chip. Nature Photon 10, 316–320 (2016). https://doi.org/10.1038/nphoton.2016.36

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing