Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Real-time near-field terahertz imaging with atomic optical fluorescence

Abstract

Terahertz (THz) near-field imaging is a flourishing discipline1,2, with applications from fundamental studies of beam propagation3 to the characterization of metamaterials4,5 and waveguides6,7. Beating the diffraction limit typically involves rastering structures or detectors with length scale shorter than the radiation wavelength; in the THz domain this has been achieved using a number of techniques including scattering tips8,9 and apertures10. Alternatively, mapping THz fields onto an optical wavelength and imaging the visible light removes the requirement for scanning a local probe, speeding up image collection times11,12. Here, we report THz-to-optical conversion using a gas of highly excited Rydberg atoms. By collecting THz-induced optical fluorescence we demonstrate a real-time image of a THz standing wave and use well-known atomic properties to calibrate the THz field strength.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: THz imaging with an atomic vapour.
Figure 2: THz field calibration.
Figure 3: Spectral analysis.

Similar content being viewed by others

References

  1. Adam, A. J. L. Review of near-field terahertz measurement methods and their applications. J. Infrared Millim. Terahertz Waves 32, 976–1019 (2011).

    Article  Google Scholar 

  2. Chan, W. L., Deibel, J. & Mittleman, D. M. Imaging with terahertz radiation. Rep. Prog. Phys. 70, 1325–1379 (2007).

    Article  ADS  Google Scholar 

  3. Bitzer, A. & Walther, M. Terahertz near-field imaging of metallic subwavelength holes and hole arrays. Appl. Phys. Lett. 92, 231101 (2008).

    Article  ADS  Google Scholar 

  4. Bitzer, A. et al. Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial. Opt. Express 17, 3826–3834 (2009).

    Article  ADS  Google Scholar 

  5. Acuna, G. et al. Surface plasmons in terahertz metamaterials. Opt. Express 16, 18745–18751 (2008).

    Article  ADS  Google Scholar 

  6. Mitrofanov, O., Tan, T., Mark, P. R., Bowden, B. & Harrington, J. A. Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy. Appl. Phys. Lett. 94, 171104 (2009).

    Article  ADS  Google Scholar 

  7. Nielsen, K. et al. Bendable, low-loss Topas fibers for the terahertz frequency range. Opt. Express 17, 8592–8601 (2009).

    Article  ADS  Google Scholar 

  8. Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008).

    Article  ADS  Google Scholar 

  9. Dean, P. et al. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser. Appl. Phys. Lett. 108, 091113 (2016).

    Article  ADS  Google Scholar 

  10. Baragwanath, A. J. et al. Terahertz near-field imaging using subwavelength plasmonic apertures and a quantum cascade laser source. Opt. Lett. 36, 2393–2395 (2011).

    Article  ADS  Google Scholar 

  11. Wu, Q., Hewitt, T. D. & Zhang, X.-C. Two-dimensional electro-optic imaging of THz beams. Appl. Phys Lett. 69, 1026–1028 (1996).

    Article  ADS  Google Scholar 

  12. Doi, A., Blanchard, F., Hirori, H. & Tanaka, K. Near-field THz imaging of free induction decay from a tyrosine crystal. Opt. Express 18, 18419–18424 (2010).

    Article  ADS  Google Scholar 

  13. Horsley, A., Du, G.-X. & Treutlein, P. Widefield microwave imaging in alkali vapor cells with sub-100 µm resolution. New J. Phys. 17, 112002 (2015).

    Article  ADS  Google Scholar 

  14. Raimond, J., Goy, P., Vitrant, G. & Haroche, S. Millimeter-wave spectroscopy of cesium Rydberg states and possible applications to frequency metrology. J. Phys. Colloq. 42, C8-37–C8-43 (1981).

    Article  Google Scholar 

  15. Drabbels, M. & Noordam, L. D. Infrared imaging camera based on a Rydberg atom photodetector. Appl. Phys. Lett. 74, 1797–1799 (1999).

    Article  ADS  Google Scholar 

  16. Gürtler, A., Meijer, A. S. & van der Zande, W. J. Imaging of terahertz radiation using a Rydberg atom photocathode. Appl. Phys. Lett. 83, 222–224 (2003).

    Article  ADS  Google Scholar 

  17. Mohapatra, A. K., Jackson, T. R. & Adams, C. S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007).

    Article  ADS  Google Scholar 

  18. Mohapatra, A. K., Bason, M. G., Butscher, B., Weatherill, K. J. & Adams, C. S. A giant electro-optic effect using polarizable dark states. Nat. Phys. 4, 890–894 (2008).

    Article  Google Scholar 

  19. Sedlacek, J. A. et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys. 8, 819–824 (2012).

    Article  Google Scholar 

  20. Gordon, J. A. et al. Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms. Appl. Phys. Lett. 105, 024104 (2014).

    Article  ADS  Google Scholar 

  21. Simons, M. T., Gordon, J. A. & Holloway, C. L. Atom-based RF electric field metrology above 100 GHz. Proc. SPIE 9747, 97471F (2016).

    Article  ADS  Google Scholar 

  22. Fan, H. Q., Kumar, S., Daschner, R., Kübler, H. & Shaffer, J. P. Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells. Opt. Lett. 39, 3030–3033 (2014).

    Article  ADS  Google Scholar 

  23. Carr, C. et al. Three-photon electromagnetically induced transparency using Rydberg states. Opt. Lett. 37, 3858–3860 (2012); erratum 38, 1853 (2013).

    Article  ADS  Google Scholar 

  24. Foot, C. Atomic Physics (Oxford Univ. Press, 2005).

    MATH  Google Scholar 

  25. Autler, S. H. & Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955).

    Article  ADS  Google Scholar 

  26. Carr, C., Ritter, R., Wade, C. G., Adams, C. S. & Weatherill, K. J. Nonequilibrium phase transition in a dilute Rydberg ensemble. Phys. Rev. Lett. 111, 113901 (2013).

    Article  ADS  Google Scholar 

  27. Seo, M. A. et al. Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors. Opt. Express 15, 11781–11789 (2007).

    Article  ADS  Google Scholar 

  28. Wang, X. et al. Visualization of terahertz surface waves propagation on metal foils. Sci. Rep. 6, 18768 (2016).

    Article  ADS  Google Scholar 

  29. Lee, A. W. M. & Hu, H. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array. Opt. Lett. 30, 2563–2565 (2005).

    Article  ADS  Google Scholar 

  30. Camparo, J. C. Atomic stabilization of electromagnetic field strength using Rabi resonances. Phys. Rev. Lett. 80, 222–225 (1998).

    Article  ADS  Google Scholar 

  31. Carr, C., Weatherill, K. J. & Adams, C. S. Polarization spectroscopy of an excited state transition. Opt. Lett. 37, 118–120 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Tarbutt, A. Beeby, A. Gallant and C. Balocco for the loan of equipment and to acknowledge funding from Durham University, The Federal Brazilian Agency of Research (CNPq), and the Engineering and Physical Sciences Research Council (EPSRC) (grants EP/M014398/1 and EP/M013103/1).

Author information

Authors and Affiliations

Authors

Contributions

The experiment was conceived by K.J.W., C.S.A. and C.G.W. The experiments were performed by C.G.W., N.R.d.M. and J.M.K. N.Š. contributed analysis tools, and the data was analysed by C.G.W. and N.Š. The paper was written by C.G.W., N.Š., N.R.d.M., J.M.K., C.S.A. and K.J.W.

Corresponding author

Correspondence to K. J. Weatherill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wade, C., Šibalić, N., de Melo, N. et al. Real-time near-field terahertz imaging with atomic optical fluorescence. Nature Photon 11, 40–43 (2017). https://doi.org/10.1038/nphoton.2016.214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing