Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum teleportation with independent sources and prior entanglement distribution over a network

Abstract

Quantum teleportation1 faithfully transfers a quantum state between distant nodes in a network, which enables revolutionary information-processing applications2,3,4. This has motivated a tremendous amount of research activity5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24. However, in the past not a single quantum-teleportation experiment has been realized with independent quantum sources, entanglement distribution prior to the Bell-state measurement (BSM) and feedforward operation simultaneously, even in the laboratory environment. We take the challenge and report the construction of a 30 km optical-fibre-based quantum network distributed over a 12.5 km area. This network is robust against noise in the real world with active stabilization strategies, which allows us to realize quantum teleportation with all the ingredients simultaneously. Both the quantum-state and process-tomography measurements and an independent statistical hypothesis test confirm the quantum nature of the quantum teleportation over this network. Our experiment marks a critical step towards the realization of a global ‘quantum internet’ in the real world.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of a quantum network with a star-topology structure.
Figure 2: Quantum teleportation in a Hefei optical fibre network.
Figure 3: State fidelities of quantum teleportation with four different input states: |t0〉, |t1〉, |D〉 and |R〉.
Figure 4: Quantum-process tomography of quantum teleportation.

Similar content being viewed by others

References

  1. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  2. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

    Book  Google Scholar 

  3. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  4. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  Google Scholar 

  5. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  ADS  Google Scholar 

  6. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  7. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    Article  ADS  Google Scholar 

  8. Nielsen, M. A., Knill, E. & Laflamme, R. Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52–55 (1998).

    Article  ADS  Google Scholar 

  9. Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003).

    Article  ADS  Google Scholar 

  10. Ursin, R. et al. Communications: quantum teleportation across the Danube. Nature 430, 849–849 (2004).

    Article  ADS  Google Scholar 

  11. Barrett, M. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

    Article  ADS  Google Scholar 

  12. Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).

    Article  ADS  Google Scholar 

  13. de Riedmatten, H. et al. Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 047904 (2004).

    Article  ADS  Google Scholar 

  14. Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    Article  ADS  Google Scholar 

  15. Zhang, Q. et al. Experimental quantum teleportation of a two-qubit composite system. Nature Phys. 2, 678–682 (2006).

    Article  ADS  Google Scholar 

  16. Landry, O., van Houwelingen, J. A. W., Beveratos, A., Zbinden, H. & Gisin, N. Quantum teleportation over the swisscom telecommunication network. J. Opt. Soc. Am. B 24, 398–403 (2007).

    Article  ADS  Google Scholar 

  17. Yin, J. et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012).

    Article  ADS  Google Scholar 

  18. Ma, X.-S. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012).

    Article  ADS  Google Scholar 

  19. Stevenson, R. et al. Quantum teleportation of laser-generated photons with an entangled-light-emitting diode. Nature Commun. 4, 2859 (2013).

    Article  ADS  Google Scholar 

  20. Bussières, F. et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nature Photon. 8, 775–778 (2014).

    Article  ADS  Google Scholar 

  21. Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  22. Wang, X.-L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015).

    Article  ADS  Google Scholar 

  23. Takesue, H. et al. Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica 2, 832–835 (2015).

    Article  ADS  Google Scholar 

  24. Ren, J.-G. et al. Long-distance quantum teleportation assisted with free-space entanglement distribution. Chin. Phys. B 18, 3605–3610 (2009).

    Article  ADS  Google Scholar 

  25. Barz, S. et al. Demonstration of blind quantum computing. Science 335, 303–308 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  26. Yang, T. et al. Experimental synchronization of independent entangled photon sources. Phys. Rev. Lett. 96, 110501 (2006).

    Article  ADS  Google Scholar 

  27. Kaltenbaek, R., Blauensteiner, B., Żukowski, M., Aspelmeyer, M. & Zeilinger, A. Experimental interference of independent photons. Phys. Rev. Lett. 96, 240502 (2006).

    Article  ADS  Google Scholar 

  28. Brendel, J., Gisin, N., Tittel, W. & Zbinden, H. Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594–2597 (1999).

    Article  ADS  Google Scholar 

  29. Hoeffding, W. Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963).

    Article  MathSciNet  Google Scholar 

  30. Valivarthi, R. et al. Quantum teleportation across a metropolitan fibre network. Nat. Photon. http://dx.doi.org/10.1038/nphoton.2016.180 (2016).

Download references

Acknowledgements

We are grateful to the staff of the QuantumCTek. We thank Y. Liu, H. Lu, P. Xu, Y.-P. Wu, Y.-L. Tang, X. Ma, X. Xie, Y.-A.C. and C.-Z.P. for discussions, and C. Liu for helping with artwork design. This work was supported by the National Fundamental Research Program (under Grant No. 2013CB336800), the National Natural Science Foundation of China, the Chinese Academy of Science.

Author information

Authors and Affiliations

Authors

Contributions

Q.Z. and J.-W.P. conceived and designed the experiments, S.-J.C., W.-J.Z., S.M., T.Y., H.T., L.-X.Y. and Z.W. fabricated and characterized the SNSPDs, Q.-C.S. and W.Z. designed and characterized the photon sources, Q.-C.S., Y.-L.M. and Y.-F.J. carried out the field test, X.J.,T.-Y.C. and X.-F.C. provided experimental assistance, Q.-C.S., Y.-B.Z. and J.-Y.F. analysed the data, Q.-C.S., X.-F.C., J.-Y.F., Q.Z. and J.-W.P. wrote the manuscript with input from all authors and Q.Z. and J.-W.P. supervised the whole project.

Corresponding authors

Correspondence to Qiang Zhang or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 732 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, QC., Mao, YL., Chen, SJ. et al. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nature Photon 10, 671–675 (2016). https://doi.org/10.1038/nphoton.2016.179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing