Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Integrated finely tunable microring laser on silicon

Abstract

Large-scale computer installations are severely limited by network-bandwidth constraints and energy costs that arise from architectural designs originally based on copper interconnects1. Wavelength-division multiplexed (WDM) photonic links can increase the network bandwidth but are sensitive to environmental perturbations and manufacturing imperfections that can affect the precise emission wavelength and output power of laser transmitters2,3. Here, we demonstrate a new design of a three-terminal hybrid III–V-on-silicon laser that integrates a metal-oxide-semiconductor (MOS) capacitor into the laser cavity. The MOS capacitor makes it possible to introduce the plasma-dispersion effect4 and thus change the laser modal refractive index and free-carrier absorption (FCA) loss to tune the laser wavelength and output power, respectively. The approach enables a highly energy efficient method to tune the output power and wavelength of microring lasers, with future prospects for high-speed, chirp-free direct laser modulation. The concept is potentially applicable to other diode laser platforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The schematics of a hybrid MOS-type microring laser.
Figure 2: Proof-of-concept device simulation.
Figure 3: SEM images of the fabricated device.
Figure 4: Laser performance under different bias to MOS capacitor.
Figure 5: Thermal chirp correction demonstration in MOS-type microring lasers.

Similar content being viewed by others

References

  1. Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

    Article  Google Scholar 

  2. Fang, W. et al. Analysis of temperature sensitivity in semiconductor lasers using gain and spontaneous emission measurements. Appl. Phys. Lett. 70, 796–798 (1997).

    Article  ADS  Google Scholar 

  3. Tee, C. W., Williams, K. A., Penty, R. V. & White, I. H. Fabrication-tolerant active–passive integration scheme for vertically coupled microring resonator. IEEE J. Sel. Top. Quantum Electron. 12, 108–116 (2006).

    Article  ADS  Google Scholar 

  4. Soref, R. & Bennett, B. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).

    Article  ADS  Google Scholar 

  5. Kachris, C. & Tomkos, I. A survey on optical interconnects for data centers. IEEE Commun. Surv. Tutorials 14, 1021–1036 (2012).

    Article  Google Scholar 

  6. Beausoleil, R. G., McLaren, M. & Jouppi, N. P. Photonic architectures for high-performance data centers. IEEE J. Sel. Top. Quantum Electron. 19, 3700109 (2013).

    Article  ADS  Google Scholar 

  7. Taubenblatt, M. A. Optical interconnects for high-performance computing. J. Lightw. Technol. 30, 448–457 (2012).

    Article  ADS  Google Scholar 

  8. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010).

    Article  ADS  Google Scholar 

  9. Michel, J., Liu, J. & Kimerling, L. C. High-performance Ge-on-Si photodetectors. Nat. Photon. 4, 527–534 (2010).

    Article  ADS  Google Scholar 

  10. Liang, D. & Bowers, J. E. Recent progress in lasers on silicon. Nat. Photon. 4, 511–517 (2010).

    Article  ADS  Google Scholar 

  11. Fang, A. W. et al. Hybrid silicon evanescent devices. Mater. Today 10, 28–35 (2007).

    Article  Google Scholar 

  12. Roelkens, G. et al. III–V/Si photonics by die-to-wafer bonding. Mater. Today 10, 36–43 (2007).

    Article  Google Scholar 

  13. Duan, G.-H. et al. Hybrid III–V on silicon lasers for photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron. 20, 158–170 (2014).

    Article  ADS  Google Scholar 

  14. Liang, D., Fiorentino, M., Srinivasan, S., Bowers, J. E. & Beausoleil, R. G. Low threshold electrically-pumped hybrid silicon microring lasers. IEEE J. Sel. Top. Quantum Electron. 17, 1528–1533 (2011).

    Article  ADS  Google Scholar 

  15. Van Campenhout, J. et al. A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks. IEEE Photon. Technol. Lett. 20, 1345–1347 (2008).

    Article  ADS  Google Scholar 

  16. Nitta, C., Farrens, M. & Akella, V. Addressing system-level trimming issues in on-chip nanophotonic networks. In 17th Int. Symp. High Performance Computer Architecture (HPCA) 122–131 (IEEE, 2011).

  17. Liu, L. et al. A thermally tunable III–V compound semiconductor microdisk laser integrated on silicon-on-insulator circuits. IEEE Photon. Technol. Lett. 22, 1270–1272 (2010).

    Article  ADS  Google Scholar 

  18. Liang, D. et al. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. Opt. Express 17, 20355–20364 (2009).

    Article  ADS  Google Scholar 

  19. Pasquariello, D. & Hjort, K. Plasma-assisted InP-to-Si low temperature wafer bonding. IEEE J. Sel. Top. Quantum Electron. 8, 118–131 (2002).

    Article  ADS  Google Scholar 

  20. Liang, D. et al. Uniformity study of wafer-scale InP-to-silicon hybrid integration. Appl. Phys. A 103, 213–218 (2011).

    Article  ADS  Google Scholar 

  21. Li, Y. et al. Room temperature wafer bonding by surface activated ALD–Al2O3 . ECS Trans. 50, 303–311 (2013).

    Article  Google Scholar 

  22. Dai, D., Fang, A. W. & Bowers, J. E. Hybrid silicon lasers for optical interconnects. New J. Phys. 11, 125016 (2009).

    Article  ADS  Google Scholar 

  23. Kobayashi, N. et al. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. J. Lightw. Technol. 33, 1241–1246 (2014).

    Article  ADS  Google Scholar 

  24. Zheng, X. et al. Efficient WDM laser sources towards terabyte/s silicon photonic interconnects. J. Lightw. Technol. 31, 4142–4154 (2013).

    Article  ADS  Google Scholar 

  25. He, J.-J. et al. Simple and compact tunable semiconductor lasers based on novel half-wave coupler. In SPIE Proc. (eds Eldada, L. A., El-Hang, L. & Sailing, H.) 93660C (SPIE, 2015).

  26. Liang, D. et al. A tunable hybrid III–V-on-Si MOS microring resonator with negligible tuning power consumption. In The Optical Fiber Communication Conference and Exhibition Paper Th1K.4 (OSA, 2016).

  27. Peng, Z., Fattal, D., Fiorentino, M. & Beausoleil, R. G. Fabrication variations in SOI microrings for DWDM networks. In Int. Conf. Group IV Photonics Paper P1.19 (IEEE, 2010).

  28. Webster, M. et al. An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters. In Int. Conf. Group IV Photonics Paper WB1 (IEEE, 2014).

  29. Junichi, F. et al. High-performance MOS-capacitor-type Si optical modulator and surface-illumination-type Ge photodetector for optical interconnection. Jpn J. Appl. Phys. 55, 04EC01 (2016).

    Article  Google Scholar 

  30. Avrutin, E. A., Gorfinkel, V. B., Luryi, S. & Shore, K. A. Control of surface emitting laser diodes by modulating the distributed Bragg mirror reflectivity: small signal analysis. Appl. Phys. Lett. 63, 2460–2462 (1993).

    Article  ADS  Google Scholar 

  31. Liu, D., Wang, L. & He, J.-J. Rate equation analysis of high speed Q-modulated semiconductor laser. J. Lightw. Technol. 28, 3128–3135 (2010).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge K. Norris for the help in SEM imaging, S. Srinivasan, M. Piels, J. Doylend, B. Thibeault and C. Zhang for useful discussion in fabrication, and support from the nanofabrication facilities at the University of California, Santa Barbara.

Author information

Authors and Affiliations

Authors

Contributions

D.L. conceived the idea, and led the simulation, fabrication and manuscript preparation. H.X. contributed to the modelling and fabrication and led the device characterization. G.K. contributed to the fabrication and testing platform set-up. M.F. and R.G.B. participated in the manuscript revision and high-level project supervision.

Corresponding author

Correspondence to D. Liang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 320 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, D., Huang, X., Kurczveil, G. et al. Integrated finely tunable microring laser on silicon. Nature Photon 10, 719–722 (2016). https://doi.org/10.1038/nphoton.2016.163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing