Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications

Abstract

Space-division multiplexing (SDM), whereby multiple spatial channels in multimode1 and multicore2 optical fibres are used to increase the total transmission capacity per fibre, is being investigated to avert a data capacity crunch3,4 and reduce the cost per transmitted bit. With the number of channels employed in SDM transmission experiments continuing to rise, there is a requirement for integrated SDM components that are scalable. Here, we demonstrate a cladding-pumped SDM erbium-doped fibre amplifier (EDFA) that consists of six uncoupled multimode erbium-doped cores. Each core supports three spatial modes, which enables the EDFA to amplify a total of 18 spatial channels (six cores × three modes) simultaneously with a single pump diode and a complexity similar to a single-mode EDFA. The amplifier delivers >20 dBm total output power per core and <7 dB noise figure over the C-band. This cladding-pumped EDFA enables combined space-division and wavelength-division multiplexed transmission over multiple multimode fibre spans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cladding-pumped six-core EDFA.
Figure 2: Internal gain and NF characterization.
Figure 3: Multi-FMF span transmission.

Similar content being viewed by others

References

  1. Ryf, R. et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing. J. Lightw. Technol. 30, 521–531 (2012).

    Article  ADS  Google Scholar 

  2. Sakaguchi, J. et al. 19-Core MCF transmission system using EDFA with shared core pumping coupled via free-space optics. Opt. Express 22, 90–95 (2014).

    Article  ADS  Google Scholar 

  3. Chralyvy, A. Plenary paper: the coming capacity crunch. Proc. European Conf. Optical Communication (ECOC) 1–1 (2009).

  4. Essiambre, R.-J., Kramer, G., Winzer, P. J., Foschini, G. J. & Goebel, B. Capacity limits of optical fiber networks. J. Lightw. Technol. 28, 662–701 (2010).

    Article  ADS  Google Scholar 

  5. Fontaine, N. K. et al. 30 × 30 MIMO transmission over 15 spatial modes. Proc. Optical Fiber Communication Conf. (OFC) Th5C.1 (2015).

  6. Van Uden, R. G. H. et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nature Photon. 8, 865–870 (2014).

    Article  ADS  Google Scholar 

  7. Fontaine, N. K. et al. Heterogeneous space-division multiplexing and joint wavelength switching demonstration. Proc. Optical Fiber Communication Conf. (OFC) Th5C.5 (2015).

  8. Jung, Y. et al. Cladding pumped few-mode EDFA for mode division multiplexed transmission. Opt. Express 22, 29008–29013 (2014).

    Article  ADS  Google Scholar 

  9. Jin, C., Ung, B., Messaddeq, Y. & LaRochelle, S. Annular-cladding erbium doped multicore fiber for SDM amplification. Opt. Express 23, 29647–29659 (2015).

    Article  ADS  Google Scholar 

  10. Sakaguchi, J. et al. Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber. J. Lightw. Technol. 34, 93–103 (2016).

    Article  ADS  Google Scholar 

  11. Igarashi, K. et al. Ultra-dense spatial-division-multiplexed optical fiber transmission over 6-mode 19-core fibers. Opt. Express 24, 10213–10231 (2016).

    Article  ADS  Google Scholar 

  12. Klaus, W. et al. Free-space coupling optics for multicore fibers. IEEE Photon. Technol. Lett. 24, 1902–1905 (2012).

    Article  ADS  Google Scholar 

  13. Huang, B. et al. All-fiber mode-group-selective photonic lantern using graded-index multimode fibers. Opt. Express 23, 224–234 (2015).

    Article  ADS  Google Scholar 

  14. Chen, H. et al. Design constraints of photonic-lantern spatial multiplexer based on laser-inscribed 3-D waveguide technology. J. Lightw. Technol. 33, 1147–1154 (2015).

    Article  ADS  Google Scholar 

  15. Koonen, A. M. J., Chen, H., Van den Boom, H. P. A. & Raz, O. Silicon photonic integrated mode multiplexer and demultiplexer. IEEE Photon. Technol. Lett. 24, 1961–1964 (2012).

    Article  ADS  Google Scholar 

  16. Gruner-Nielsen, L. et al. Few mode transmission fiber with low DGD, low mode coupling, and low loss. J. Lightw. Technol. 30, 3693–3698 (2012).

    Article  ADS  Google Scholar 

  17. Sillard, P., Bigot-Astruc, M. & Molin, D. Few-mode fibers for mode-division-multiplexed systems. J. Lightw. Technol. 32, 2824–2829 (2014).

    Article  ADS  Google Scholar 

  18. Hayashi, T., Taru, T., Shimakawa, O., Sasaki, T. & Sasaoka, E. Characterization of crosstalk in ultra-low-crosstalk multi-core fiber. J. Light. Technol. 30, 583–589 (2012).

    Article  ADS  Google Scholar 

  19. Imamura, K., Gonda, T. & Sugizaki, R. 19-Core fiber with new core arrangement to realize low crosstalk. Proc. OptoElectronics and Communication Conf. (OECC) 312–313 (2014).

  20. Ip, E. et al. 146λ × 6 × 19-Gbaud wavelength-and mode-division multiplexed transmission over 10 × 50-km spans of few-mode fiber with a gain-equalized few-mode EDFA. J. Lightw. Technol. 32, 790–797 (2014).

    Article  ADS  Google Scholar 

  21. Igarashi, K. et al. 110.9-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA. Opt. Express 21, 18053–18060 (2013).

    Article  ADS  Google Scholar 

  22. Abedin, K. S. et al. Cladding-pumped erbium-doped multicore fiber amplifier. Opt. Express 20, 20191–20200 (2012).

    Article  ADS  Google Scholar 

  23. Takasaka, S. et al. Cladding-pumped seven-core EDFA using a multimode pump light coupler. Proc. European Conf. and Exhibition on Optical Communication (ECOC) We.4.A.5 (2013).

  24. Ono, H. et al. 12-Core double-clad Er/Yb-doped fiber amplifier employing free-space coupling pump/signal combiner module. Proc. European Conf. and Exhibition on Optical Communication (ECOC) We.4.A.4 (2013).

  25. Jain, S. et al. Few-mode multi-element fiber amplifier for mode division multiplexing. Opt. Express 22, 29031–29036 (2014).

    Article  ADS  Google Scholar 

  26. Chen, H. et al. Demonstration of cladding-pumped six-core erbium-doped fiber amplifier. J. Lightw. Technol. 34, 1654–1660 (2016).

    Article  ADS  Google Scholar 

  27. Fontaine, N. K. et al. Multi-mode optical fiber amplifier supporting over 10 spatial modes. Proc. Optical Fiber Communication Conf. (OFC) Th5A.4 (2016).

  28. Bai, N., Ip, E., Wang, T. & Li, G. Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump. Opt. Express 19, 16601–16611 (2011).

    Article  ADS  Google Scholar 

  29. Kang, Q. et al. Minimizing differential modal gain in cladding-pumped EDFAs supporting four and six mode groups. Opt. Express 22, 21499–21507 (2014).

    Article  ADS  Google Scholar 

  30. Theeg, T., Sayinc, H., Neumann, J., Overmeyer, L. & Kracht, D. Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers. Opt. Express 20, 28125–28141 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the ICT R&D program of MSIP/IITP, Republic of Korea (R0101-15-0071, ‘Research of mode-division-multiplexing optical transmission technology over 10 km multimode fibre’), by the National Basic Research Program of China (973, project no. 2014CB340103/4), by the Canada Research Chair in Advanced Photonics Technologies for Communications (APTEC), by the Canada Excellence Research Chair in Enabling Photonic Innovations for Information and Communications (CERCP) and the Natural Sciences and Engineering Research Council of Canada (NSERC), and by NSFC Projects 61377076, 61307085 and 61335005. The authors acknowledge OFS Labs for the few-mode fibre. The authors also thank R.W. Tkach and P.J. Winzer for support and valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

H.C. and C.J. developed the concept. C.J. and S.L. designed the fibre. N.G., S.M. and Y.M. fabricated the fibre. H.C., C.J., B.H. and K.S. conducted the fibre amplifier characterization. H.C. and C.J. conducted the ray tracing simulation. H.C., B.H. and N.K.F. fabricated the fan-in/fan-out. H.C., N.K.F. and R.R. conducted the transmission experiments. H.C. and N.K.F. wrote the manuscript. R.-J.E., G.L., Y.M. and S.L. helped write the article and provided funding.

Corresponding author

Correspondence to H. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Jin, C., Huang, B. et al. Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications. Nature Photon 10, 529–533 (2016). https://doi.org/10.1038/nphoton.2016.125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing