Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Terahertz modulation of the Faraday rotation by laser pulses via the optical Kerr effect

Abstract

The magneto-optical Faraday effect played a crucial role in the elucidation of the electromagnetic nature of light. Today it is powerful means to probe magnetism and the basic operational principle of magneto-optical modulators. Understanding the mechanisms allowing for modulation of the magneto-optical response at terahertz frequencies may have far-reaching consequences for photonics1, ultrafast optomagnetism2,3,4 and magnonics5,6, as well as for future development of ultrafast Faraday modulators. Here we suggest a conceptually new approach for an ultrafast tunable magneto-optical modulation with the help of counter-propagating laser pulses. Using terbium gallium garnet (Tb3Ga5O12) we demonstrate the feasibility of such magneto-optical modulation with a frequency up to 1.1 THz, which is continuously tunable by means of an external magnetic field. Besides the novel concept for ultrafast magneto-optical polarization modulation, our findings reveal the importance of accounting for propagation effects in the interpretation of pump–probe magneto-optical experiments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geometry of the experiment and electronic structure of Tb3+.
Figure 2: Experimental observation of the ultrafast Faraday modulation.
Figure 3: The frequency of the magneto-optical modulation.
Figure 4: Scheme of the ultrafast magneto-optical modulation via counter-propagating laser pulses.

Similar content being viewed by others

References

  1. Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photon. 8, 119–123 (2014).

    Article  ADS  Google Scholar 

  2. Bigot, J.-Y. Femtosecond magneto-optical processes in metals. C. R. Acad. Sci. IV 2, 1483–1504 (2001).

    Google Scholar 

  3. Bigot, J.-Y., Vomir, M. & Beaurepaire, E. Coherent ultrafast magnetism induced by femtosecond laser pulses. Nature Phys. 5, 515–520 (2009).

    Article  ADS  Google Scholar 

  4. Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Article  ADS  Google Scholar 

  5. Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

    Article  ADS  Google Scholar 

  6. Vogel, M. et al. Optically reconfigurable magnetic materials. Nature Phys. 11, 487–491 (2015).

    Article  ADS  Google Scholar 

  7. Kumar, N. et al. THz near-field Faraday imaging in hybrid metamaterials. Opt. Express 20, 11277–11287 (2012).

    Article  ADS  Google Scholar 

  8. Riordan, J. A., Sun, F. G., Lu, Z. G. & Zhang, X.-C. Free-space transient magneto-optic sampling. Appl. Phys. Lett. 71, 1452–1454 (1997).

    Article  ADS  Google Scholar 

  9. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nature Photon. 5, 31–34 (2011).

    Article  ADS  Google Scholar 

  10. Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    Article  ADS  Google Scholar 

  11. Satoh, T. et al. Writing and reading of an arbitrary optical polarization state in an antiferromagnet. Nature Photon. 9, 25–29 (2015).

    Article  ADS  Google Scholar 

  12. Goto, T. et al. Optical Tamm states in one-dimensional magnetophotonic structures. Phys. Rev. Lett. 101, 113902 (2008).

    Article  ADS  Google Scholar 

  13. Inoue, M., Levy, M. & Baryshev, A. V. (eds) Magnetophotonics (from Theory to Applications) (Series in Materials Science 1782013, Springer, 2013).

    Google Scholar 

  14. Thomsen, C., Grahn, H., Maris, H. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).

    Article  ADS  Google Scholar 

  15. Scherbakov, A. V. et al. Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses. Phys. Rev. Lett. 105, 117204 (2010).

    Article  ADS  Google Scholar 

  16. Kim, J.-W., Vomir, M. & Bigot, J.-Y. Ultrafast magnetoacoustics in nickel films. Phys. Rev. Lett. 109, 166601 (2012).

    Article  ADS  Google Scholar 

  17. Kim, J.-W., Vomir, M. & Bigot, J.-Y. Controlling the spins angular momentum in ferromagnets with sequences of picosecond acoustic pulses. Sci. Rep. 5, 8511 (2015).

    Article  Google Scholar 

  18. Popov, S. V., Svirko, Y. P. & Zheludev, N. I. Pump–probe reflective polarization-sensitive nonlinear optics. J. Opt. Soc. Am. B 13, 2729–2738 (1996).

    Article  ADS  Google Scholar 

  19. Yasuhara, R. et al. Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics. Opt. Express 15, 11255–11261 (2007).

    Article  ADS  Google Scholar 

  20. Villora, E. G. et al. Faraday rotator properties of Tb3 (Sc1.95Lu0.05)Al3O12, a highly transparent terbium-garnet for visible-infrared optical isolators. Appl. Phys. Lett. 99, 011111 (2011).

    Article  ADS  Google Scholar 

  21. Gruber, J. B. et al. Analyses of the optical and magneto-optical spectra of Tb3Ga5O12 . J. Appl. Phys. 101, 023108 (2007).

    Article  ADS  Google Scholar 

  22. Mikhaylovskiy, R. V., Hendry, E., Ogrin, F. Y. & Kruglyak, V. V. Low-temperature time-domain terahertz spectroscopy of terbium gallium garnet crystals. Phys. Rev. B 87, 094414 (2013).

    Article  ADS  Google Scholar 

  23. Löw, U. et al. Magnetization, magnetic susceptibility and ESR in Tb3Ga5O12 . Eur. Phys. J. B 86, 87 (2013).

    Article  ADS  Google Scholar 

  24. Hurrell, J. P. et al. Optical phonons of yttrium aluminum garnet. Phys. Rev. 173, 851–856 (1968).

    Article  ADS  Google Scholar 

  25. Koningstein, J. A. & Kane-Maguire, C. J. Electronic Raman spectroscopy and magnetic susceptibilities. Can. J. Chem. 52, 3445–3450 (1974).

    Article  Google Scholar 

  26. Gavignet-Tillard, A., Hammann, J. & De Seze, L. Crystal-field splitting of the fundamental multiplet of Tb3+ in terbium aluminum garnet. J. Phys. Chem. Solids 34, 241–248 (1973).

    Article  ADS  Google Scholar 

  27. Kamazawa, K. et al. Field-induced antiferromagnetism and competition in the metamagnetic state of terbium gallium garnet. Phys. Rev. B 78, 064412 (2008).

    Article  ADS  Google Scholar 

  28. Guillot, M. & Marchand, A. Step-like magnetisation curves in Tb3Ga5O12 . J. Phys. C 18, 3547 (1985).

    Article  ADS  Google Scholar 

  29. Kaganov, M., Pustyl'nik, N. & Shalaeva, T. Magnons, magnetic polaritons, magnetostatic waves. Sov. Phys. Usp. 40, 181 (1997).

    Article  Google Scholar 

  30. Stevens, T. E., Wahlstrand, J. K., Kuhl, J. & Merlin, R. Cherenkov radiation at speeds below the light threshold: phonon-assisted phase matching. Science 291, 627–630 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge T. Satoh, D. Afanasev, A. Kirilyuk for valuable comments, A. Toonen for indispensable technical support. This work was supported by the European Community Seventh Framework Programme FP7-NMP-2011-SMALL-281043 (FEMTOSPIN), the European Research Council ERC Grant agreement No.257280 (Femtomagnetism), the Foundation for Fundamental Research on Matter (FOM) as well as the Netherlands Organization for Scientific Research(NWO), program “Leading Scientist” of the Russian Ministry of Education and Science (14.z50.31.0034).

Author information

Authors and Affiliations

Authors

Contributions

R.R.S., R.V.M., A.V.K. conceived the project. R.R.S. designed and built the experimental set up. R.R.S. and R.V.M. performed all measurements, analyzed the data. R.R.S., R.V.M., A.K.Z. developed the theoretical model with important suggestions from A.V.K.. R.R.S., R.V.M. and A.V.K co-wrote the paper with contributions from A.K.Z, Th. R. and V.V.K. The project was coordinated by A.V.K.

Corresponding author

Correspondence to R. R. Subkhangulov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2627 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subkhangulov, R., Mikhaylovskiy, R., Zvezdin, A. et al. Terahertz modulation of the Faraday rotation by laser pulses via the optical Kerr effect. Nature Photon 10, 111–114 (2016). https://doi.org/10.1038/nphoton.2015.249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.249

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing